Skip to main content
Log in

Sugar metabolism as input signals and fuel for leaf senescence

  • Minireview
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Senescence in plants is an active and acquired developmental process that occurs at the last developmental stage during the life cycle of a plant. Leaf senescence is a relatively slow process, which is characterized by loss of photosynthetic activity and breakdown of macromolecules, to compensate for reduced energy production. Sugars, major photosynthetic assimilates, are key substrates required for cellular respiration to produce intermediate sources of energy and reducing power, which are known to be essential for the maintenance of cellular processes during senescence. In addition, sugars play roles as signaling molecules to facilitate a wide range of developmental processes as metabolic sensors. However, the roles of sugar during the entire period of senescence remain fragmentary. The purpose of the present review was to examine and explore changes in production, sources, and functions of sugars during leaf senescence. Further, the review explores the current state of knowledge on how sugars mediate the onset or progression of leaf senescence. Progress in the area would facilitate the determination of more sophisticated ways of manipulating the senescence process in plants and offer insights that guide efforts to maintain nutrients in leafy plants during postharvest storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Sources of metabolic sugars and their related executors during development, introduced in the present review, are presented. Empirical levels of metabolic sugars are illustrated using a color intensity gradient. (Color figure online)

Fig. 2

Similar content being viewed by others

Abbreviations

Glc:

Glucose

Suc:

Sucrose

T6P:

Trehalose-6-phosphate

TOR:

Target of rapamycin

TPP:

Trehalose-6-phosphate phosphatase

TPS:

Trehalose-6-phosphate synthase

SnRK1:

Sucrose-non-fermenting1-related kinases

SAG:

Senescence-associated gene

UDP-Glc:

Uridine diphosphate glucose

References

  • Ahn CS, Han JA, Lee HS, Lee S, Pai HS (2011) The PP2A regulatory subunit Tap46, a component of the TOR signaling pathway, modulates growth and metabolism in plants. Plant Cell 23:185–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahn CS, Ahn HK, Pai HS (2015) Overexpression of the PP2A regulatory subunit Tap46 leads to enhanced plant growth through stimulation of the TOR signalling pathway. J Exp Bot 66:827–840

    Article  CAS  PubMed  Google Scholar 

  • Avonce N, Leyman B, Mascorro-Gallardo JO, Van Dijck P, Thevelein JM, Iturriaga G (2004) The Arabidopsis trehalose-6-P synthase AtTPS1 gene is a regulator of glucose, abscisic acid, and stress signaling. Plant Physiol 136:3649–3659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baena-González E, Rolland F, Thevelein JM, Sheen J (2007) A central integrator of transcription networks in plant stress and energy signalling. Nature 448:938–942

    Article  CAS  PubMed  Google Scholar 

  • Blauth SL, Yao Y, Klucinec JD, Shannon JC, Thompson DB, Guilitinan MJ (2001) Identification of mutator insertional mutants of starch-branching enzyme 2a in corn. Plant Physiol 125:1396–1405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Breeze E, Harrison E, McHattie S, Hughes L, Hickman R, Hill C, Kiddle S, Kim YS, Penfold CA, Jenkins D et al (2011) High-resolution temporal profiling of transcripts during Arabidopsis leaf senescence reveals a distinct chronology of processes and regulation. Plant Cell 23:873–894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buchanan-Wollaston V, Page T, Harrison E, Breeze E, Pyung OL, Hong GN, Lin JF, Wu SH, Swidzinski J, Ishizaki K et al (2005) Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation-induced senescence in Arabidopsis. Plant J 42:567–585

    Article  CAS  PubMed  Google Scholar 

  • Chrobok D, Law SR, Brouwer B, Linden P, Ziolkowska A, Liebsch D, Narsai R, Szal B, Moritz T, Rouhier N et al (2016) Dissecting the metabolic role of mitochondria during developmental leaf senescence. Plant Physiol 172:2132–2153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung BC, Sang Yeb L, Sung Aeong O, Tae Hyong R, Hong Gil N, Lee CH (1997) The promoter activity of sen 1, a senescence-associated gene of Arabidopsis, is repressed by sugars. J Plant Physiol 151:339–345

    Article  CAS  Google Scholar 

  • Dai N, Schaffer A, Petreikov M, Shahak Y, Giller Y, Ratner K, Levine A, Granot D (1999) Overexpression of arabidopsis hexokinase in tomato plants inhibits growth, reduces photosynthesis, and induces rapid senescence. Plant Cell 11:1253–1266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deprost D, Yao L, Sormani R, Moreau M, Leterreux G, Nicolai M, Bedu M, Robaglia C, Meyer C (2007) The Arabidopsis TOR kinase links plant growth, yield, stress resistance and mRNA translation. EMBO Rep 8:864–870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eastmond PJ, Graham IA (2003) Trehalose metabolism: a regulatory role for trehalose-6-phosphate? Curr Opin Plant Biol 6:231–235

    Article  CAS  PubMed  Google Scholar 

  • Eastmond PJ, Van Dijken AJH, Spielman M, Kerr A, Tissier AF, Dickinson HG, Jones JDG, Smeekens SC, Graham IA (2002) Trehalose-6-phosphate synthase 1, which catalyses the first step in trehalose synthesis, is essential for Arabidopsis embryo maturation. Plant J 29:225–235

    Article  CAS  PubMed  Google Scholar 

  • Evans IM, Rus AM, Belanger EM, Kimoto M, Brusslan JA (2010) Dismantling of Arabidopsis thaliana mesophyll cell chloroplasts during natural leaf senescence. Plant Biol (Stuttg) 12:1–12

    Article  CAS  Google Scholar 

  • Fröhlich V, Feller U (1991) Effect of phloem interruption on senescence and protein remobilization in the flag leaf of field-grown wheat. Biochem Physiol Pflanz 187:139–147

    Article  Google Scholar 

  • Fujiki Y, Yoshikawa Y, Sato T, Inada N, Ito M, Nishida I, Watanabe A (2001) Dark-inducible genes from Arabidopsis thaliana are associated with leaf senescence and repressed by sugars. Physiol Plant 111:345–352

    Article  CAS  PubMed  Google Scholar 

  • Ghillebert R, Swinnen E, Wen J, Vandesteene L, Ramon M, Norga K, Rolland F, Winderickx J (2011) The AMPK/SNF1/SnRK1 fuel gauge and energy regulator: structure, function and regulation. FEBS J 278:3978–3990

    Article  CAS  PubMed  Google Scholar 

  • Gibson SI (2005) Control of plant development and gene expression by sugar signaling. Curr Opin Plant Biol 8:93–102

    Article  CAS  PubMed  Google Scholar 

  • Goddijn OJ, van Dun K (1999) Trehalose metabolism in plants. Trends Plant Sci 4:315–319

    Article  CAS  PubMed  Google Scholar 

  • Goldthwaite JJ, Laetsch WM (1967) Regulation of senescence in bean leaf discs by light and chemical growth regulators. Plant Physiol 42:1757–1762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomez LD, Gilday A, Feil R, Lunn JE, Graham IA (2010) AtTPS1-mediated trehalose 6-phosphate synthesis is essential for embryogenic and vegetative growth and responsiveness to ABA in germinating seeds and stomatal guard cells. Plant J 64:1–13

    CAS  PubMed  Google Scholar 

  • Guan S, Wang P, Liu H, Liu G, Ma Y, Zhao L (2011) Production of high-amylose maize lines using RNA interference in sbe2a. Afr J Biotechnol 10:15229–15237

    Article  CAS  Google Scholar 

  • Halford NG, Hey SJ (2009) Snf1-related protein kinases (SnRKs) act within an intricate network that links metabolic and stress signalling in plants. Biochem J 419:247–259

    Article  CAS  PubMed  Google Scholar 

  • Han Y, Ban Q, Li H, Hou Y, Jin M, Han S, Rao J (2016) DkXTH8, a novel xyloglucan endotransglucosylase/hydrolase in persimmon, alters cell wall structure and promotes leaf senescence and fruit postharvest softening. Sci Rep 6:39155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heinrichs L, Schmitz J, Flügge U-I, Häusler R (2012) The mysterious rescue of adg1-1/tpt-2—an Arabidopsis thaliana double mutant impaired in acclimation to high light—by exogenously supplied sugars. Front Plant Sci 3:265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Izumi M, Nakamura S (2018) Chloroplast protein turnover: the influence of extraplastidic processes, including autophagy. Int J Mol Sci 19:828

    Article  CAS  PubMed Central  Google Scholar 

  • Izumi M, Wada S, Makino A, Ishida H (2010) The autophagic degradation of chloroplasts via rubisco-containing bodies is specifically linked to leaf carbon status but not nitrogen status in Arabidopsis. Plant Physiol 154:1196–1209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jamar C, du Jardin P, Fauconnier ML (2011) Cell wall polysaccharides hydrolysis of malting barley (Hordeum vulgare L.): a review. Biotechnol Agron Soc Environ 15:301–313

    Google Scholar 

  • Jang JC, León P, Zhou L, Sheen J (1997) Hexokinase as a sugar sensor in higher plants. Plant Cell 9:5–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khudairi AK (1970) Chlorophyll degradation by light in leaf discs in the presence of sugar. Physiol Plant 23:613–622

    Article  CAS  Google Scholar 

  • Kim J, Woo HR, Nam HG (2016) Toward systems understanding of leaf senescence: an integrated multi-omics perspective on leaf senescence research. Mol Plant 9:813–825

    Article  CAS  PubMed  Google Scholar 

  • Kim GD, Cho YH, Yoo SD (2017) Regulatory functions of cellular energy sensor SNF1-related kinase1 for leaf senescence delay through ETHYLENE-INSENSITIVE3 repression. Sci Rep 7:3193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim J, Kim JH, Lyu JI, Woo HR, Lim PO (2018a) New insights into the regulation of leaf senescence in Arabidopsis. J Exp Bot 69:787–799

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Park SJ, Lee IH, Chu H, Penfold CA, Kim JH, Buchanan-Wollaston V, Nam HG, Woo HR, Lim PO (2018b) Comparative transcriptome analysis in Arabidopsis ein2/ore3. and ahk3/ore12 mutants during dark-induced leaf senescence. J Exp Bot 69:3023–3036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kötting O, Santelia D, Edner C, Eicke S, Marthaler T, Gentry MS, Comparot-Moss S, Chen J, Smith AM, Steup M et al (2009) STARCH-EXCESS4 is a laforin-like phosphoglucan phosphatase required for starch degradation in Arabidopsis thaliana. Plant Cell 21:334–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krapp A, Quick WP, Stitt M (1991) Ribulose-1,5-bisphosphate carboxylase-oxygenase, other Calvin-cycle enzymes, and chlorophyll decrease when glucose is supplied to mature spinach leaves via the transpiration stream. Planta 186:58–69

    Article  CAS  PubMed  Google Scholar 

  • Lastdrager J, Hanson J, Smeekens S (2014) Sugar signals and the control of plant growth and development. J Exp Bot 65:799–807

    Article  CAS  PubMed  Google Scholar 

  • Lee EJ, Matsumura Y, Soga K, Hoson T, Koizumi N (2007) Glycosyl hydrolases of cell wall are induced by sugar starvation in Arabidopsis. Plant Cell Physiol 48:405–413

    Article  CAS  PubMed  Google Scholar 

  • Leopold AC (1961) Senescence in plant development: the death of plants or plant parts may be of positive ecological or physiological value. Science 134:1727–1732

    Article  CAS  PubMed  Google Scholar 

  • Li L, Sheen J (2016) Dynamic and diverse sugar signaling. Curr Opin Plant Biol 33:116–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim PO, Nam HG (2005) The molecular and genetic control of leaf senescence and longevity in Arabidopsis. Curr Top Dev Biol 67:49–83

    Article  CAS  PubMed  Google Scholar 

  • Lim PO, Kim HJ, Nam HG (2007) Leaf senescence. Annu Rev Plant Biol 58:115–136

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Gehan JP, Sharkey TD (2005) Daylength and circadian effects on starch degradation and maltose metabolism. Plant Physiol 138:2280–2291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lunn JE, Feil R, Hendriks JHM, Gibon Y, Morcuende R, Osuna D, Scheible WR, Carillo P, Hajirezaei MR, Stitt M (2006) Sugar-induced increases in trehalose 6-phosphate are correlated with redox activation of ADPglucose pyrophosphorylase and higher rates of starch synthesis in Arabidopsis thaliana. Biochem J 397:139–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lunn JE, Delorge I, Figueroa CM, Van Dijck P, Stitt M (2014) Trehalose metabolism in plants. Plant J 79:544–567

    Article  CAS  PubMed  Google Scholar 

  • Lyu JI, Baek SH, Jung S, Chu H, Nam HG, Kim J, Lim PO (2017) High-throughput and computational study of leaf senescence through a phenomic approach. Front Plant Sci 8:250

    PubMed  PubMed Central  Google Scholar 

  • Martins MC, Hejazi M, Fettke J, Steup M, Feil R, Krause U, Arrivault S, Vosloh D, Figueroa CM, Ivakov A et al (2013) Feedback inhibition of starch degradation in Arabidopsis leaves mediated by trehalose 6-phosphate. Plant Physiol 163:1142–1163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masclaux C, Valadier MH, Brugiere N, Morot-Gaudry JF, Hirel B (2000) Characterization of the sink/source transition in tobacco (Nicotiana tabacum L.) shoots in relation to nitrogen management and leaf senescence. Planta 211:510–518

    Article  CAS  PubMed  Google Scholar 

  • Matsoukas IG, Massiah AJ, Thomas B (2013) Starch metabolism and antiflorigenic signals modulate the juvenile-to-adult phase transition in Arabidopsis. Plant Cell Environ 36:1802–1811

    Article  CAS  PubMed  Google Scholar 

  • Menand B, Desnos T, Nussaume L, Bergert F, Bouchez D, Meyer C, Robaglia C (2002) Expression and disruption of the Arabidopsis TOR (target of rapamycin) gene. Proc Natl Acad Sci USA 99:6422–6427

    Article  CAS  PubMed  Google Scholar 

  • Mohapatra PK, Patro L, Raval MK, Ramaswamy NK, Biswal UC, Biswal B (2010) Senescence-induced loss in photosynthesis enhances cell wall beta-glucosidase activity. Physiol Plant 138:346–355

    Article  CAS  PubMed  Google Scholar 

  • Moore B, Zhou L, Rolland F, Hall Q, Cheng WH, Liu YX, Hwang I, Jones T, Sheen J (2003) Role of the Arabidopsis glucose sensor HXK1 in nutrient, light, and hormonal signaling. Science 300:332–336

    Article  CAS  PubMed  Google Scholar 

  • Moreau M, Azzopardi M, Clément G, Dobrenel T, Marchive C, Renne C, Martin-Magniette M-L, Taconnat L, Renou J-P, Robaglia C et al (2012) Mutations in the Arabidopsis homolog of LST8/GβL, a partner of the target of rapamycin kinase, Impair plant growth, flowering, and metabolic adaptation to long days. Plant Cell 24:463–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munne-Bosch S (2008) Do perennials really senesce? Trends Plant Sci 13:216–220

    Article  CAS  PubMed  Google Scholar 

  • Noh YS, Amasino RM (1999) Identification of a promoter region responsible for the senescence-specific expression of SAG12. Plant Mol Biol 41:181–194

    Article  CAS  PubMed  Google Scholar 

  • Nunes C, O’Hara LE, Primavesi LF, Delatte TL, Schluepmann H, Somsen GW, Silva AB, Fevereiro PS, Wingler A, Paul MJ (2013) The trehalose 6-phosphate/SnRK1 signaling pathway primes growth recovery following relief of sink limitation. Plant Physiol 162:1720–1732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oh SA, Park JH, Lee GI, Paek KH, Park SK, Nam HG (1997) Identification of three genetic loci controlling leaf senescence in Arabidopsis thaliana. Plant J 12:527–535

    Article  CAS  PubMed  Google Scholar 

  • Ono K, Watanabe A (1997) Levels of endogenous sugars, transcripts of rbcS and rbcL, and of RuBisCO protein in senescing sunflower leaves. Plant Cell Physiol 38:1032–1038

    Article  CAS  Google Scholar 

  • Ono K, Terashima I, Watanabe A (1996) Interaction between nitrogen deficit of a plant and nitrogen content in the old leaves. Plant Cell Physiol 37:1083–1089

    Article  CAS  Google Scholar 

  • Otegui MS (2018) Vacuolar degradation of chloroplast components: autophagy and beyond. J Exp Bot 69:741–750

    Article  CAS  PubMed  Google Scholar 

  • Parrott D, Yang L, Shama L, Fischer AM (2005) Senescence is accelerated, and several proteases are induced by carbon “feast” conditions in barley (Hordeum vulgare L.) leaves. Planta 222:989–1000

    Article  CAS  PubMed  Google Scholar 

  • Pfister B, Zeeman SC (2016) Formation of starch in plant cells. Cell Mol Life Sci 73:2781–2807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polge C, Thomas M (2007) SNF1/AMPK/SnRK1 kinases, global regulators at the heart of energy control? Trends Plant Sci 12:20–28

    Article  CAS  Google Scholar 

  • Poovaiah B (1974) Formation of callose and lignin during leaf abscission. Am J Bot 61:829–834

    Article  Google Scholar 

  • Quirino BF, Noh YS, Himelblau E, Amasino RM (2000) Molecular aspects of leaf senescence. Trends Plant Sci 5:278–282

    Article  CAS  PubMed  Google Scholar 

  • Ren M, Venglat P, Qiu S, Feng L, Cao Y, Wang E, Xiang D, Wang J, Alexander D, Chalivendra S et al (2012) Target of rapamycin signaling regulates metabolism, growth, and life span in Arabidopsis. Plant Cell 24:4850–4874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakuraba Y, Lee SH, Kim YS, Park OK, Hortensteiner S, Paek NC (2014) Delayed degradation of chlorophylls and photosynthetic proteins in Arabidopsis autophagy mutants during stress-induced leaf yellowing. J Exp Bot 65:3915–3925

    Article  PubMed  PubMed Central  Google Scholar 

  • Sampedro J, Valdivia ER, Fraga P, Iglesias N, Revilla G, Zarra I (2017) Soluble and membrane-bound β-glucosidases are involved in trimming the xyloglucan backbone. Plant Physiol 173:1017–1030

    Article  CAS  PubMed  Google Scholar 

  • Scialdone A, Mugford ST, Feike D, Skeffington A, Borrill P, Graf A, Smith AM, Howard M (2013) Arabidopsis plants perform arithmetic division to prevent starvation at night. eLife 2:e00669

    Article  PubMed  PubMed Central  Google Scholar 

  • Seluzicki A, Burko Y, Chory J (2017) Dancing in the dark: darkness as a signal in plants. Plant Cell Environ 40:2487–2501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi L, Wu Y, Sheen J (2018) TOR signaling in plants: conservation and innovation. Development 145:dev160887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silver DM, Kötting O, Moorhead GBG (2014) Phosphoglucan phosphatase function sheds light on starch degradation. Trends Plant Sci 19:471–478

    Article  CAS  PubMed  Google Scholar 

  • Smith AM, Zeeman SC, Thorneycroft D, Smith SM (2003) Starch mobilization in leaves. J Exp Bot 54:577–583

    Article  CAS  PubMed  Google Scholar 

  • Stettler M, Eicke S, Mettler T, Messerli G, Hortensteiner S, Zeeman SC (2009) Blocking the metabolism of starch breakdown products in Arabidopsis leaves triggers chloroplast degradation. Mol Plant 2:1233–1246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Streb S, Zeeman SC (2012) Starch metabolism in Arabidopsis. Arabidopsis Book 10:e0160

    Article  PubMed  PubMed Central  Google Scholar 

  • Thimann KV, Tetley RM, Krivak BM (1977) Metabolism of oat leaves during senescence: V. Senescence in light. Plant Physiol 59:448–454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas H (2013) Senescence, ageing and death of the whole plant. New Phytol 197:696–711

    Article  PubMed  Google Scholar 

  • Thomas H, Stoddart JL (1980) Leaf senescence. Annu Rev Plant Phys 31:83–111

    Article  CAS  Google Scholar 

  • van Doorn WG (2008) Is the onset of senescence in leaf cells of intact plants due to low or high sugar levels? J Exp Bot 59:1963–1972

    Article  CAS  PubMed  Google Scholar 

  • Vandesteene L, Ramon M, Le Roy K, Van Dijck P, Rolland F (2010) A single active trehalose-6-P synthase (TPS) and a family of putative regulatory TPS-like proteins in Arabidopsis. Mol Plant 3:406–419

    Article  CAS  PubMed  Google Scholar 

  • Vogel G, Aeschbacher RA, Muller J, Boller T, Wiemken A (1998) Trehalose-6-phosphate phosphatases from Arabidopsis thaliana: identification by functional complementation of the yeast tps2 mutant. Plant J 13:673–683

    Article  CAS  PubMed  Google Scholar 

  • Wada S, Ishida H, Izumi M, Yoshimoto K, Ohsumi Y, Mae T, Makino A (2009) Autophagy plays a role in chloroplast degradation during senescence in individually darkened leaves. Plant Physiol 149:885–893

    Article  PubMed  PubMed Central  Google Scholar 

  • Wahl V, Ponnu J, Schlereth A, Arrivault S, Langenecker T, Franke A, Feil R, Lunn JE, Stitt M, Schmid M (2013) Regulation of flowering by trehalose-6-phosphate signaling in Arabidopsis thaliana. Science 339:704–707

    Article  CAS  PubMed  Google Scholar 

  • Watanabe M, Balazadeh S, Tohge T, Erban A, Giavalisco P, Kopka J, Mueller-Roeber B, Fernie AR, Hoefgen R (2013) Comprehensive dissection of spatiotemporal metabolic shifts in primary, secondary, and lipid metabolism during developmental senescence in Arabidopsis. Plant Physiol 162:1290–1310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weaver LM, Amasino RM (2001) Senescence is induced in individually darkened Arabidopsis leaves, but inhibited in whole darkened plants. Plant Physiol 127:876–886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weise SE, Aung K, Jarou ZJ, Mehrshahi P, Li Z, Hardy AC, Carr DJ, Sharkey TD (2012) Engineering starch accumulation by manipulation of phosphate metabolism of starch. Plant Biotechnol J 10:545–554

    Article  CAS  PubMed  Google Scholar 

  • Wingler A (2018) Transitioning to the next phase: the role of sugar signaling throughout the plant life cycle. Plant Physiol 176:1075–1084

    Article  CAS  PubMed  Google Scholar 

  • Wingler A, Marès M, Pourtau N (2004) Spatial patterns and metabolic regulation of photosynthetic parameters during leaf senescence. New Phytol 161:781–789

    Article  Google Scholar 

  • Wingler A, Purdy S, MacLean JA, Pourtau N (2006) The role of sugars in integrating environmental signals during the regulation of leaf senescence. J Exp Bot 57:391–399

    Article  CAS  PubMed  Google Scholar 

  • Wingler A, Delatte TL, O’Hara LE, Primavesi LF, Jhurreea D, Paul MJ, Schluepmann H (2012) Trehalose 6-phosphate is required for the onset of leaf senescence associated with high carbon availability. Plant Physiol 158:1241–1251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woo HR, Koo HJ, Kim J, Jeong H, Yang JO, Lee IH, Jun JH, Choi SH, Park SJ, Kang B et al (2016) Programming of plant leaf senescence with temporal and inter-organellar coordination of transcriptome in Arabidopsis. Plant Physiol 171:452–467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie Q, Michaeli S, Peled-Zehavi H, Galili G (2015) Chloroplast degradation: one organelle, multiple degradation pathways. Trends Plant Sci 20:264–265

    Article  CAS  PubMed  Google Scholar 

  • Xiong Y, Contento AL, Bassham DC (2005) AtATG18a is required for the formation of autophagosomes during nutrient stress and senescence in Arabidopsis thaliana. Plant J 42:535–546

    Article  CAS  PubMed  Google Scholar 

  • Yandeau-Nelson MD, Laurens L, Shi Z, Xia H, Smith AM, Guiltinan MJ (2011) Starch-branching enzyme IIa is required for proper diurnal cycling of starch in leaves of maize. Plant Physiol 156:479–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida S (2003) Molecular regulation of leaf senescence. Curr Opin Plant Biol 6:79–84

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Primavesi LF, Jhurreea D, Andralojc PJ, Mitchell RAC, Powers SJ, Schluepmann H, Delatte T, Wingler A, Paul MJ (2009) Inhibition of SNF1-related protein kinasel activity and regulation of metabolic pathways by trehalose-6-phosphate. Plant Physiol 149:1860–1871

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I apologize to all authors whose studies are not included in the present review due to space limitations. This research was supported by the National Research Foundation of Korea (NRF) Grant funded by the Ministry of Science and ICT (MSIT) (2018R1C1B5086056).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeongsik Kim.

Ethics declarations

Conflict of interest

Author 1 (JK) declares that he has no conflict of interest.

Research involving human and animal rights

This article does not contain any studies with human subjects or animals performed by any of the author.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J. Sugar metabolism as input signals and fuel for leaf senescence. Genes Genom 41, 737–746 (2019). https://doi.org/10.1007/s13258-019-00804-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-019-00804-y

Keywords

Navigation