Skip to main content
Log in

Genome-wide identification of the HKT genes in five Rosaceae species and expression analysis of HKT genes in response to salt-stress in Fragaria vesca

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Introduction

The high-affinity potassium transporter (HKT) gene family is implicated in the regulation of response to salt stress in different plants. Yet, knowledge remains very limited for them in the Rosaceae species. The whole genome sequences of the five Rosaceae species, including Fragaria vesca (woodland strawberry), Malus domestica (apple), Pyrus communis (pear), Prunus mume (mei) and Prunus persica (peach), give the opportunity to uncover the evolutionary pattern of the HKT genes among Rosaceae genomes.

Objectives

The primary objective of this study was to identify the HKT genes in five Rosaceae species and understand the potential biological functions of the HKT genes in response to salt stress in Fragaria vesca.

Methods

In this study, the HKT genes in five Rosaceae species were identified by bioinformatics. The phylogenetic tree was constructed and Ka and Ks values were calculated by MEGA 5.0. Genetic mapping of these genes were processed by MapInspect software. In addition, the physico-chemical properties, the cis-acting elements, the intron/exon structures, and the conserved domain motifs of these genes were analyzed and predicted by the websites of ProtParam, Pfam, PlantCARE, GSDS, MEME, and Motif Scan.

Results

In the present study, a total of 12 HKT genes were identified from five Rosaceae species. In the phylogenetic tree, orthologous genes were clustering together rather than paralogous genes and PcHKTs underwent two species-specific duplications before the divergence of pear and apple.. Furthermore, various expression levels of FvHKT genes revealed that woodland strawberry HKT genes are associated in responding to the salt stress. The activities of ROS-scavenging enzymes, superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) were also measured in different treatments of salt-stressed woodland strawberry leaves, which suggested that the three enzymes may also take part in response to salt stress.

Conclusion

The Ka/Ks ratio demonstrated that purifying selection played a major role in the evolutionary processes of HKT genes among the Rosaceae species, and FvHKT genes are involved in response to salt stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alscher RG, Erturk N, Heath LS (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53:1331–1341

    Article  CAS  Google Scholar 

  • Asins MJ, Villalta I, Aly MM, Olias R, De Morales PA, Huertas R, Li J, Jaime-Perez N, Haro R, Raga V et al (2013) Two closely linked tomato HKT coding genes are positional candidates for the major tomato QTL involved in Na+/K+ homeostasis. Plant Cell Environ 36:1171–1191

    Article  CAS  Google Scholar 

  • Bafeel SO (2013) Phylogeny of the plant salinity tolerance related HKT genes. Int J Biol 5:64–68

    Article  Google Scholar 

  • Bailey TL, Williams N, Misleh C, Li WW (2006) MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Res 34:W369–W373

    Article  CAS  Google Scholar 

  • Benito B, Haro R, Amtmann A, Cuin TA, Dreyer I (2014) The twins K+ and Na+ in plants. J Plant Physiol 171:723–731

    Article  CAS  Google Scholar 

  • Berthomieu P, Conejero G, Nublat A, Brackenbury WJ, Lambert C, Savio C, Uozumi N, Oiki S, Yamada K, Cellier F et al (2003) Functional analysis of AtHKT1 in Arabidopsis shows that Na+ recirculation by the phloem is crucial for salt tolerance. Embo J 22:2004–2014

    Article  CAS  Google Scholar 

  • Bor M, Ozdemir F, Turkan I (2003) The effect of salt stress on lipid peroxidation and antioxidants in leaves of sugar beet Beta vulgaris L. and wild beet Beta maritima L. Plant Sci 164:77–84

    Article  CAS  Google Scholar 

  • Borsani O, Valpuesta V, Botella MA (2001) Evidence for a role of salicylic acid in the oxidative damage generated by NaCl and osmotic stress in Arabidopsis seedlings. Plant Physiol 126:1024–1030

    Article  CAS  Google Scholar 

  • Cao S, Yang Z, Cai Y, Zheng Y (2011) Fatty acid composition and antioxidant system in relation to susceptibility of loquat fruit to chilling injury. Food Chem 127:1777–1783

    Article  CAS  Google Scholar 

  • Chagne D, Crowhurst RN, Pindo M, Thrimawithana A, Deng C, Ireland H, Fiers M, Dzierzon H, Cestaro A, Fontana P et al (2014) The draft genome sequence of European Pear (Pyrus communis L. ‘Bartlett’). Plos One 9:e92644

    Article  Google Scholar 

  • Chang S, Puryear J, Cairney J (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Rep 11:113–116

    Article  CAS  Google Scholar 

  • Corratge-Faillie C, Jabnoune M, Zimmermann S, Very AA, Fizames C, Sentenac H (2010) Potassium and sodium transport in non-animal cells: the Trk/Ktr/HKT transporter family. Cell Mol Life Sci 67:2511–2532

    Article  CAS  Google Scholar 

  • Darwish O, Shahan R, Liu Z, Slovin JP, Alkharouf NW (2015) Re-annotation of the woodland strawberry (Fragaria vesca) genome. BMC Genom 16:29

    Article  CAS  Google Scholar 

  • Ding MQ, Hou PC, Shen X, Wang MJ, Deng SR, Sun J, Xiao F, Wang RG, Zhou XY, Lu CF et al (2010) Salt-induced expression of genes related to Na+/K+ and ROS homeostasis in leaves of salt-resistant and salt-sensitive poplar species. Plant Mol Biol 73:251–269

    Article  CAS  Google Scholar 

  • Dionisio-Sese ML, Tobita S (1998) Antioxidant responses of rice seedlings to salinity stress. Plant Sci 135:1–9

    Article  CAS  Google Scholar 

  • Evelin H, Kapoor R, Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot 104:1263–1280

    Article  CAS  Google Scholar 

  • Fairbairn DJ, Liu WH, Schachtman DP, Gomez-Gallego S, Day SR, Teasdale RD (2000) Characterisation of two distinct HKT1-like potassium transporters from Eucalyptus camaldulensis. Plant Mol Biol 43:515–525

    Article  CAS  Google Scholar 

  • Foyer CH, Lelandais M, Kunert KJ (1994) Photooxidative stress in plants. Physiol Plant 92:696–717

    Article  CAS  Google Scholar 

  • Garciadeblas B, Barrero-Gil J, Benito B, Rodriguez-Navarro A (2007) Potassium transport systems in the moss Physcomitrella patens: pphak1 plants reveal the complexity of potassium uptake. Plant J 52:1080–1093

    Article  CAS  Google Scholar 

  • Garriga M, Romero-Bravo S, Estrada F, Escobar A, Matus IA, Del Pozo A, Astudillo CA, Lobos GA (2017) Assessing wheat traits by spectral reflectance: do we really need to focus on predicted trait-values or directly identify the elite genotypes group? Front Plant Sci 8:280

    Article  Google Scholar 

  • Gomez-Porras JL, Riano-Pachon DM, Benito B, Haro R, Sklodowski K, Rodriguez-Navarro A, Dreyer I (2012) Phylogenetic analysis of K+ transporters in bryophytes, lycophytes, and flowering plants indicates a specialization of vascular plants. Front Plant Sci 3:167

    Article  Google Scholar 

  • Gonzalez-Mendoza D, Moreno AQ, Zapata-Perez O (2008) An improved method for the isolation of total RNA from Avicennia germinans leaves. Zeitschrift für Naturforschung C 63:124–126

    Article  CAS  Google Scholar 

  • Gouiaa S, Khoudi H, Leidi EO, Pardo JM, Masmoudi K (2012) Expression of wheat Na+/H+ antiporter TNHXS1 and H+-pyrophosphatase TVP1 genes in tobacco from a bicistronic transcriptional unit improves salt tolerance. Plant Mol Biol 79:137–155

    Article  CAS  Google Scholar 

  • GuetaDahan Y, Yaniv Z, Zilinskas BA, BenHayyim G (1997) Salt and oxidative stress: similar and specific responses and their relation to salt tolerance in Citrus. Planta 203:460–469

    Article  CAS  Google Scholar 

  • Gunes A, Inal A, Alpaslan M, Eraslan F, Bagci EG, Cicek N (2007) Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize (Zea mays L.) grown under salinity. J Plant Physiol 164:728–736

    Article  CAS  Google Scholar 

  • Guruprasad K, Reddy BB, Pandit MW (1990) Correlation between stability of a protein and its dipeptide composition: a novel approach for predicting in vivo stability of a protein from its primary sequence. Protein Eng 4:155–161

    Article  CAS  Google Scholar 

  • Haro R, Banuelos MA, Senn MAE, Barrero-Gil J, Rodriguez-Navarro A (2005) HKT1 mediates sodium uniport in roots. Pitfalls in the expression of HKT1 in yeast. Plant Physiol 139:1495–1506

    Article  CAS  Google Scholar 

  • Hernandez JA, Olmos E, Corpas FJ, Sevilla F, Delrio LA (1995) Salt-induced oxidative stress in chloroplasts of pea plants. Plant Sci 105:151–167

    Article  CAS  Google Scholar 

  • Horie T, Yoshida K, Nakayama H, Yamada K, Oiki S, Shinmyo A (2001) Two types of HKT transporters with different properties of Na+ and K+ transport in Oryza sativa. Plant J 27:129–138

    Article  CAS  Google Scholar 

  • Horie T, Hauser F, Schroeder JI (2009) HKT transporter-mediated salinity resistance mechanisms in Arabidopsis and monocot crop plants. Trends Plant Sci 14:660–668

    Article  CAS  Google Scholar 

  • Hu B, Jin JP, Guo AY, Zhang H, Luo JC, Gao G (2015) GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics 31:1296–1297

    Article  Google Scholar 

  • Hughes AL, Nei M (1988) Pattern of nucleotide substitution at major histocompatibility complex class I loci reveals overdominant selection. Nature 335:167–170

    Article  CAS  Google Scholar 

  • Imlay JA (2003) Pathways of oxidative damage. Annu Rev Microbiol 57:395–418

    Article  CAS  Google Scholar 

  • Ji H, Pardo JM, Batelli G, Van Oosten MJ, Bressan RA, Li X (2013) The salt overly sensitive (SOS) pathway: established and emerging roles. Mol Plant 6:275–286

    Article  CAS  Google Scholar 

  • Koca H, Bor M, Ozdemir F, Turkan I (2007) The effect of salt stress on lipid peroxidation, antioxidative enzymes and proline content of sesame cultivars. Environ Exp Bot 60:344–351

    Article  CAS  Google Scholar 

  • Larkin MA, Blackshields G, Brown N, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  Google Scholar 

  • Leshem Y, Melamed-Book N, Cagnac O, Ronen G, Nishri Y, Solomon M, Cohen G, Levine A (2006) Suppression of Arabidopsis vesicle-SNARE expression inhibited fusion of H2O2-containing vesicles with tonoplast and increased salt tolerance. Proc Natl Acad Sci USA 103:18008–18013

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2 – ∆∆CT method. Methods 25:402–408

    Article  CAS  Google Scholar 

  • Ma C, Wang H, Macnish AJ, Estrada-Melo AC, Lin J, Chang Y, Reid MS, Jiang CZ (2015) Transcriptomic analysis reveals numerous diverse protein kinases and transcription factors involved in desiccation tolerance in the resurrection plant Myrothamnus flabellifolia. Hortic Res 2:15034

    Article  Google Scholar 

  • Mckersie B, Leshem Y (1994) Stress and stress coping in cultivated plants. Springer, The Netherlands, pp 194–217

    Book  Google Scholar 

  • Melchior H (1964) A. Engler’s Syllabus der pflanzenfamilien. Gebruder Borntraeger

  • Meneguzzo S, Navam-Izzo F, Izzo R (1999) Antioxidative responses of shoots and roots of wheat to increasing NaCl concentrations. J Plant Physiol 155:274–280

    Article  CAS  Google Scholar 

  • Mian A, Oomen RJFJ, Isayenkov S, Sentenac H, Maathuis FJM, Very AA (2011) Over-expression of an Na+-and K+-permeable HKT transporter in barley improves salt tolerance. Plant J 68:468–479

    Article  CAS  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  CAS  Google Scholar 

  • Mittova V, Tal M, Volokita M, Guy M (2003) Up-regulation of the leaf mitochondrial and peroxisomal antioxidative systems in response to salt-induced oxidative stress in the wild salt-tolerant tomato species Lycopersicon pennellii. Plant Cell Environ 26:845–856

    Article  CAS  Google Scholar 

  • Munns R, James RA, Xu B, Athman A, Conn SJ, Jordans C, Byrt CS, Hare RA, Tyerman SD, Tester M et al (2012) Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene. Nat Biotechnol 30:360–173

    Article  CAS  Google Scholar 

  • Neto ADD, Prisco JT, Eneas J, de Abreu CEB, Gomes E (2006) Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes. Environ Exp Bot 56:87–94

    Article  Google Scholar 

  • Noctor G (1998) Ascorbate and glutathione: Keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  CAS  Google Scholar 

  • Platten JD, Cotsaftis O, Berthomieu P, Bohnert H, Davenport RJ, Fairbairn DJ, Horie T, Leigh RA, Lin HX, Luan S et al (2006) Nomenclature for HKT transporters, key determinants of plant salinity tolerance. Trends Plant Sci 11:372–374

    Article  CAS  Google Scholar 

  • Rehman HM, Nawaz MA, Shah ZH, Daur I, Khatoon S, Yang SH, Chung G (2017) In-depth genomic and transcriptomic analysis of five K+ Ttransporter gene families in soybean confirm their differential expression for nodulation. Front Plant Sci 8:1–14

    Google Scholar 

  • Ren ZH, Gao JP, Li LG, Cai XL, Huang W, Chao DY, Zhu MZ, Wang ZY, Luan S, Lin HX (2005) A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat Genet 37:1141–1146

    Article  CAS  Google Scholar 

  • Ren ZJ, Liu Y, Kang D, Fan KJ, Wang CY, Wang GY, Liu YJ (2015) Two alternative splicing variants of maize HKT1;1 confer salt tolerance in transgenic tobacco plants. Plant Cell Tissue Organ Culture 123:569–578

    Article  CAS  Google Scholar 

  • Rodriguez-Navarro A, Rubio F (2006) High-affinity potassium and sodium transport systems in plants. J Exp Bot 57:1149–1160

    Article  CAS  Google Scholar 

  • Rout NP, Shaw BP (2001) Salt tolerance in aquatic macrophytes: possible involvement of the antioxidative enzymes. Plant Sci 160:415–423

    Article  CAS  Google Scholar 

  • Rus A, Yokoi S, Sharkhuu A, Reddy M, Lee BH, Matsumoto TK, Koiwa H, Zhu JK, Bressan RA, Hasegawa PM (2001) AtHKT1 is a salt tolerance determinant that controls Na+ entry into plant roots. Proc Natl Acad Sci USA 98:14150–14155

    Article  CAS  Google Scholar 

  • Salimi F, Shekari F, Hamzei J (2016) Methyl jasmonate improves salinity resistance in German chamomile (Matricaria chamomilla L.) by increasing activity of antioxidant enzymes. Acta Physiol Plant 38:1

    Article  CAS  Google Scholar 

  • Schachtman DP, Schroeder JI (1994) Structure and transport mechanism of a high-affinity potassium uptake transporter from higher-plants. Nature 370:655–658

    Article  CAS  Google Scholar 

  • Sekmen AH, Turkan I, Takio S (2007) Differential responses of antioxidative enzymes and lipid peroxidation to salt stress in salt-tolerant Plantago maritima and salt-sensitive Plantago media. Physiol Plant 131:399–411

    Article  CAS  Google Scholar 

  • Shao HB, Chu LY, Wu G, Zhang JH, Lu ZH, Hu YC (2007) Changes of some anti-oxidative physiological indices under soil water deficits among 10 wheat (Triticum aestivum L.) genotypes at tillering stage. Colloids Surf B Biointerfaces 54:143–149

    Article  CAS  Google Scholar 

  • Shulaev V, Sargent DJ, Crowhurst RN, Mockler TC, Folkerts O, Delcher AL, Jaiswal P, Mockaitis K, Liston A, Mane SP et al (2011) The genome of woodland strawberry (Fragaria vesca). Nat Genet 43:109–116

    Article  CAS  Google Scholar 

  • Sreenivasulu N, Grimm B, Wobus U, Weschke W (2000) Differential response of antioxidant compounds to salinity stress in salt-tolerant and salt-sensitive seedlings of foxtail millet (Setaria italica). Physiol Plant 109:435–442

    Article  CAS  Google Scholar 

  • Su H, Balderas E, Vera-Estrella R, Golldack D, Quigley F, Zhao CS, Pantoja O, Bohnert JH (2003) Expression of the cation transporter McHKT1 in a halophyte. Plant Mol Biol 52:967–980

    Article  CAS  Google Scholar 

  • Su Y, Luo W, Lin W, Ma L, Kabir MH (2015) Model of cation transportation mediated by High-Affinity Potassium Transporters (HKTs) in higher plants. Biol Proc Online 17:1

    Article  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  Google Scholar 

  • Tang J, Lin J, Li H, Li X, Yang Q, Cheng Z-M, Chang Y (2016) Characterization of CIPK family in Asian Pear (Pyrus bretschneideri Rehd) and co-expressionanalysis related to salt and osmotic stress responses. Front Plant Sci 7:1361

    PubMed  PubMed Central  Google Scholar 

  • Uozumi N, Kim EJ, Rubio F, Yamaguchi T, Muto S, Tsuboi A, Bakker EP, Nakamura T, Schroeder JI (2000) The Arabidopsis HKT1 gene homolog mediates inward Na+ currents in Xenopus laevis oocytes and Na+ uptake in Saccharomyces cerevisiae. Plant Physiol 122:1249–1259

    Article  CAS  Google Scholar 

  • Van Breusegem F, Slooten L, Stassart JM, Moens T, Botterman J, Van Montagu M, Inze D (1999) Overproduction of Arabidopsis thaliana FeSOD confers oxidative stress tolerance to transgenic maize. Plant Cell Physiol 40:515–523

    Article  Google Scholar 

  • Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, Fontana P, Bhatnagar SK, Troggio M, Pruss D et al (2010) The genome of the domesticated apple (Malus x domestica Borkh.). Nat Genet 42:833–839

    Article  CAS  Google Scholar 

  • Verde I, Abbott AG, Scalabrin S, Jung S, Shu SQ, Marroni F, Zhebentyayeva T, Dettori MT, Grimwood J, Cattonaro F et al (2013) The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nat Genet 45:487–447

    Article  CAS  Google Scholar 

  • Volkov V (2015) Salinity tolerance in plants. Quantitative approach to ion transport starting from halophytes and stepping to genetic and protein engineering for manipulating ion fluxes. Front Plant Sci 6:683

    Google Scholar 

  • Wang TB, Gassmann W, Rubio F, Schroeder JI, Glass AD (1998) Rapid up-regulation of HKT1, a high-affinity potassium transporter gene, in roots of barley and wheat following withdrawal of potassium. Plant Physiol 118:651–659

    Article  Google Scholar 

  • Wang M, Vannozzi A, Wang G, Liang YH, Tornielli GB, Zenoni S, Cavallini E, Pezzotti M, Cheng ZM (2014a) Genome and transcriptome analysis of the grapevine (Vitis vinifera L.) WRKY gene family. Hortic Res 1:14016

    Article  Google Scholar 

  • Wang TT, Ren ZJ, Liu ZQ, Feng X, Guo RQ, Li BG, Li LG, Jing HC (2014b) SbHKT1;4, a member of the high-affinity potassium transporter gene family from Sorghum bicolor, functions to maintain optimal Na+/K+ balance under Na+ stress. J Integr Plant Biol 56:315–332

    Article  CAS  Google Scholar 

  • Yazici I, Tuerkan I, Sekmen AH, Demiral T (2007) Salinity tolerance of purslane (Portulaca oleracea L.) is achieved by enhanced antioxidative system, lower level of lipid peroxidation and proline accumulation. Environ Exp Bot 61:49–57

    Article  CAS  Google Scholar 

  • Zhang QX, Chen WB, Sun LD, Zhao FY, Huang BQ, Yang WR, Tao Y, Wang J, Yuan ZQ, Fan GY et al (2012) The genome of Prunus mume. Nature Commun 3:1318

    Article  Google Scholar 

  • Zhu J-K (2001) Plant salt tolerance. Trends Plant Sci 6:66–71

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by the National Natural Science Foundation of China (31501737), Fundamental Research Funds for the Central Universities (KJQN201655), partly supported by the open funds of the State Key Laboratory of Crop Genetics and Germplasm Enhancement (ZW201711) and the Priority Academic Program Development of Modern Horticulture Science in Jiangsu Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Zhong.

Ethics declarations

Conflict of interest

Shichuang Zhang declares that he does not have conflict of interest. Yuexia Tong declares that she does not have conflict of interest. Yingjun Li declares that she does not have conflict of interest. Zong-Ming Cheng declares that he does not have conflict of interest. Yan Zhong declares that she does not have conflict of interest.

Ethical approval

The article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 66 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Tong, Y., Li, Y. et al. Genome-wide identification of the HKT genes in five Rosaceae species and expression analysis of HKT genes in response to salt-stress in Fragaria vesca. Genes Genom 41, 325–336 (2019). https://doi.org/10.1007/s13258-018-0767-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-018-0767-0

Keywords

Navigation