Skip to main content
Log in

Dosimetric characteristics of a thin bolus made of variable shape tungsten rubber for photon radiotherapy

  • Scientific Paper
  • Published:
Physical and Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

In this study, we aim to clarify the dosimetric characteristics of a real time variable shape rubber containing tungsten (STR) as a thin bolus in 6-MV photon radiotherapy. The percentage depth doses (PDDs) and lateral dose profiles (irradiation field = 10 × 10  cm2) in the water-equivalent phantom were measured and compared between no bolus, a commercial 5-mm gel bolus, and 0.5-, 1-, 2-, and 3-mm STR boluses. The characteristics of the PDDs were evaluated according to relative doses at 1 mm depth (D1mm) and depth of maximum dose (dmax). To determine the distance of the shift caused by the STR bolus, the PDD value at a depth of 100 mm without a bolus was obtained. For each STR thickness, the difference between the depth corresponding to this PDD value and 100 mm was calculated. The penumbra size and width of the 50% dose were evaluated using lateral dose profiles. The D1mm with no bolus, 5-mm gel bolus, and 0.5-, 1-, 2-, and 3-mm STR boluses were 47.6%, 91.5%, 78.2%, 86.6%, 89.3%, and 89.4%, respectively, and the respective dmax values were 15, 10, 13, 12, 11, and 10 mm. The shifting distance of the 0.5-, 1-, 2-, and 3-mm STR boluses were 2.7, 4.4, 4.8, and 4.9 mm, respectively. There were no differences for those in lateral dose profiles. The 1-mm-thick STR thin bolus shifted the depth dose profile by 4.4 mm and could be used as a customized bolus for photon radiotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Mahdavi JM, Petersen TH, Sjölin M, Behrens CF, Mahmood F (2015) PO-0838: Determination of the effect on patient surface dose from unwanted air cavities under bolus in VMAT. Radiother Oncol 115:S424. https://doi.org/10.1016/S0167-8140(15)40830-8

    Article  Google Scholar 

  2. Boman E, Ojala J, Rossi M, Kapanen M (2018) Monte Carlo investigation on the effect of air gap under bolus in post-mastectomy radiotherapy. Phys Med 55:82–87. https://doi.org/10.1016/j.ejmp.2018.10.023

    Article  PubMed  Google Scholar 

  3. Ashburner MJ, Tudor S (2014) The optimization of superficial planning target volumes (PTVs) with helical tomotherapy. J Appl Clin Med Phys 15:4–12. https://doi.org/10.1120/jacmp.v15i6.4560

    Article  PubMed Central  Google Scholar 

  4. Khan FM, Gibbons JP (2014) Khan’s the physics of radiation therapy, 5th edn. Lippincott Williams & Wilkins, Baltimore

    Google Scholar 

  5. Aoyama T, Uto K, Shimizu H, Ebara M, Kitagawa T, Tachibana H, Suzuki K, Kodaira T (2020) Physical and dosimetric characterization of thermoset shape memory bolus developed for radiotherapy. Med Phys 47:6103–6112. https://doi.org/10.1002/mp.14516

    Article  PubMed  Google Scholar 

  6. Luu A, Doerwald-Munoz L, Ostapiak O (2015) An evaluation of two approaches to skin bolus design for patients receiving radiotherapy for head and neck cancers. J Med Imaging Radiat Sci 46:S37–S42. https://doi.org/10.1016/j.jmir.2014.08.001

    Article  PubMed  Google Scholar 

  7. Ciesielski B, Reinstein LE, Wielopolski L, Meek A (1989) Dose enhancement in buildup region by lead, aluminum, and lucite absorbers for 15 MVp photon beam. Med Phys 16:609–613

    Article  CAS  Google Scholar 

  8. Ehler ED, Sterling DA (2020) 3D printed copper-plastic composite material for use as a radiotherapy bolus. Phys Med 76:202–206. https://doi.org/10.1016/j.ejmp.2020.07.008

    Article  PubMed  Google Scholar 

  9. Park JM, Son J, An HJ, Kim JH, Wu HG, Kim JI (2019) Bio-compatible patient-specific elastic bolus for clinical implementation. Phys Med Biol 64:105006. https://doi.org/10.1088/1361-6560/ab1c93

    Article  PubMed  PubMed Central  Google Scholar 

  10. Al-sudani TA, Biasi G, Wilkinson D, Davis JA, Kearnan R, Matar FS, Cutajar DL, Metcalfe P, Rosenfeld AB (2020) eXaSkin: A novel high-density bolus for 6 MV X-rays radiotherapy. Phys Med 80:42–46. https://doi.org/10.1016/j.ejmp.2020.09.002

    Article  PubMed  Google Scholar 

  11. Richmond ND, Daniel JM, Whitbourn JR, Greenhalgh AD (2016) Dosimetric characteristics of brass mesh as bolus under megavoltage photon irradiation. Br J Radiol 89:20150796. https://doi.org/10.1259/bjr.20150796

    Article  PubMed  Google Scholar 

  12. Al-Rahbi ZS, Cutajar DL, Metcalfe P, Rosenfeld AB (2018) Dosimetric effects of brass mesh bolus on skin dose and dose at depth for postmastectomy chest wall irradiation. Phys Med 54:84–93. https://doi.org/10.1016/j.ejmp.2018.09.009

    Article  PubMed  Google Scholar 

  13. Kijima K, Monzen H, Matsumoto K, Tamura M, Nishimura Y (2018) The shielding ability of novel tungsten rubber against the electron beam for clinical use in radiation therapy. Anticancer Res 38:3919–3927

    Article  CAS  Google Scholar 

  14. Kijima K, Krisanachinda A, Tamura M, Nishimura Y, Monzen H (2019) Feasibility of a tungsten rubber grid collimator for electron grid therapy. Anticancer Res 39:2799–2804

    Article  CAS  Google Scholar 

  15. Kijima K, Krisanachinda A, Tamura M, Monzen H, Nishimura Y (2020) Reduction of occupational exposure using a novel tungsten-containing rubber shield in interventional radiology. Health Phys 118:609–614. https://doi.org/10.1097/HP.0000000000001177

    Article  CAS  PubMed  Google Scholar 

  16. Tamura M, Monzen H, Kubo K, Hirata M, Nishimura Y (2017) Feasibility of tungsten functional paper in electron grid therapy: a Monte Carlo study. Phys Med Biol 62:878–889. https://doi.org/10.1088/1361-6560/62/3/878

    Article  PubMed  Google Scholar 

  17. Takei Y, Kamomae T, Monzen H, Nakaya T, Sugita K, Suzuki K, Oguchi H, Tamura M, Nishimura Y (2020) Feasibility of using tungsten functional paper as a thin bolus for electron beam radiotherapy. Phys Eng Sci Med 43:1101–1111. https://doi.org/10.1007/s13246-020-00910-2

    Article  PubMed  Google Scholar 

  18. Kamomae T, Monzen H, Kawamura M, Okudaira K, Nakaya T, Mukoyama T, Miyake Y, Ishihara Y, Itoh Y, Naganawa S (2017) Dosimetric feasibility of using tungsten-based functional paper for flexible chest wall protectors in intraoperative electron radiotherapy for breast cancer. Phys Med Biol 63:015006. https://doi.org/10.1088/1361-6560/aa96cf

    Article  CAS  PubMed  Google Scholar 

  19. Inada M, Monzen H, Matsumoto K, Tamura M, Minami T, Nakamatsu K, Nishimura Y (2018) A novel radiation-shielding undergarment using tungsten functional paper for patients with permanent prostate brachytherapy. J Radiat Res 59:333–337. https://doi.org/10.1093/jrr/rry030

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kawai Y, Tamura M, Amano M, Kamomae T, Monzen H (2019) Dosimetric characterization of a novel surface collimator with tungsten functional paper for electron therapy. Anticancer Res 39:2839–2843

    Article  CAS  Google Scholar 

  21. Monzen H, Kanno I, Fujimoto T, Hiraoka M (2017) Estimation of the shielding ability of a tungsten functional paper for diagnostic x-rays and gamma rays. J Appl Clin Med Phys 18:325–329. https://doi.org/10.1002/acm2.12122

    Article  PubMed  PubMed Central  Google Scholar 

  22. Monzen H, Tamura M, Kijima K, Otsuka M, Matsumoto K, Wakabayashi K, Choi MG, Yoon DK, Doi H, Akiyama H, Nishimura Y (2019) Estimation of radiation shielding ability in electron therapy and brachytherapy with real time variable shape tungsten rubber. Phys Med 66:29–35. https://doi.org/10.1016/j.ejmp.2019.09.233

    Article  PubMed  Google Scholar 

  23. Matsumoto K, Tamura M, Otsuka M, Wakabayashi K, Kijima K, Monzen H (2020) Dosimetric characteristics of a real time shapeable tungsten containing rubber with electron beams. Nihon Hoshasen Gijutsu Gakkai Zasshi 76:1248–1255. https://doi.org/10.6009/jjrt.2020_JSRT_76.12.1248

    Article  CAS  PubMed  Google Scholar 

  24. Wakabayashi K, Monzen H, Tamura M, Matsumoto K, Takei Y, Nishimura Y (2021) Dosimetric evaluation of skin collimation with tungsten rubber for electron radiotherapy: a Monte Carlo study. J Appl Clin Med Phys 22:63–70. https://doi.org/10.1002/acm2.13210

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kawai Y, Tamura M, Amano M, Kosugi T, Monzen H (2021) First clinical experience of tungsten rubber electron adaptive therapy with real-time variable-shape tungsten rubber. Anticancer Res 41:919–925

    Article  CAS  Google Scholar 

  26. Japanese Industrial Standards (2012) Rubber, vulcanized or thermoplastic -Determination of hardness - Part 3: Durometer method. Japanese Standards Association, Tokyo

  27. Japanese Industrial Standards (2017) Rubber, vulcanized or thermoplastic - Determination of tensile stress-strain properties. Japanese Standards Association, Tokyo

  28. Kamomae T, Oita M, Hayashi N, Sasaki M, Aoyama H, Oguchi H, Kawamura M, Monzen H, Itoh Y, Naganawa S (2016) Characterization of stochastic noise and post-irradiation density growth for reflective-type radiochromic film in therapeutic photon beam dosimetry. Phys Med 32:1314–1320. https://doi.org/10.1016/j.ejmp.2016.07.091

    Article  PubMed  Google Scholar 

  29. International Electrotechnical Commission (2007) IEC 60976 International Standard: Medical electrical equipment–medical electron accelerators–functional performance characteristics, Edition 2.0. IEC, Geneva

  30. Kaushik S, Punia R, Tyagi A, Malik A (2019) Effect of scattering and differential attenuation on beam profile in the presence of high-density intensity modifying compensator. J Cancer Res Ther 15:110. https://doi.org/10.4103/jcrt.JCRT_661_17

    Article  Google Scholar 

  31. Ordonez-Sanz C, Bowles S, Hirst A, MacDougall ND (2014) A single plan solution to chest wall radiotherapy with bolus? Br J Radiol 87:20140035. https://doi.org/10.1259/bjr.20140035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Mr. Masafumi Shigita and Mr. Yoshito Kadowaki for their support. We also thank Richard Lipkin, PhD, from Edanz Group (https://en-author-services.edanz.com/ac) for editing a draft of this manuscript.

Funding

This work was supported partly by Japan Society for the Promotion of Science (JSPS) KAKENHI [grant numbers 19K08211, 19K17213].

Author information

Authors and Affiliations

Authors

Contributions

KO, HM, and MT designed the study and the analysis. KO performed the measurement and analysis the data. KO, HM, and MT performed interpretation the data. KO, HM, MT, and YN prepared manuscript. All authors collaborated on writing the manuscript, read and approved the final manuscript.

Corresponding author

Correspondence to Hajime Monzen.

Ethics declarations

Conflict of interest

Hajime Monzen received a research donation from Hayakawa Rubber Co., Ltd.

Ethical approval

This article does not involve any studies with human participants or animals performed by any of the authors.

Informed consent

This article does not involve patient data.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okuhata, K., Tamura, M., Monzen, H. et al. Dosimetric characteristics of a thin bolus made of variable shape tungsten rubber for photon radiotherapy. Phys Eng Sci Med 44, 1249–1255 (2021). https://doi.org/10.1007/s13246-021-01059-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-021-01059-2

Keywords

Navigation