Skip to main content
Log in

Determining tolerance levels for quality assurance of 3D printed bolus for modulated arc radiotherapy of the nose

  • Scientific Paper
  • Published:
Physical and Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

Given the existing literature on the subject, there is obviously a need for specific advice on quality assurance (QA) tolerances for departments using or implementing 3D printed bolus for radiotherapy treatments. With a view to providing initial suggested QA tolerances for 3D printed bolus, this study evaluated the dosimetric effects of changes in bolus geometry and density, for a particularly common and challenging clinical situation: specifically, volumetric modulated arc therapy (VMAT) treatment of the nose. Film-based dose verification measurements demonstrated that both the AAA and the AXB algorithms used by the Varian Eclipse treatment planning system (Varian Medical Systems, Palo Alto, USA) were capable of providing sufficiently accurate dose calculations to allow this planning system to be used to evaluate the effects of bolus errors on dose distributions from VMAT treatments of the nose. Thereafter, the AAA and AXB algorithms were used to calculate the dosimetric effects of applying a range of simulated errors to the design of a virtual bolus, to identify QA tolerances that could be used to avoid clinically significant effects from common printing errors. Results were generally consistent, whether the treatment target was superficial and treated with counter-rotating coplanar arcs or more-penetrating and treated with noncoplanar arcs, and whether the dose was calculated using the AAA algorithm or the AXB algorithm. The results of this study suggest the following QA tolerances are advisable, when 3D printed bolus is fabricated for use in photon VMAT treatments of the nose: bolus relative electron density variation within \(\pm 5\%\) (although an action level at \(\pm 10\%\) may be permissible); bolus thickness variation within \(\pm 1\) mm (or 0.5 mm variation on opposite sides); and air gap between bolus and skin \(\le 5\) mm. These tolerances should be investigated for validity with respect to other treatment modalities and anatomical sites. This study provides a set of baselines for future comparisons and a useful method for identifying additional or alternative 3D printed bolus QA tolerances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Vyas V, Palmer L, Mudge R, Jiang R, Fleck A, Schaly B, Osei E, Charland P (2013) On bolus for megavoltage photon and electron radiation therapy. Med Dosim 38(3):268–273

    Article  Google Scholar 

  2. Łukowiak M, Boehlke M, Matias D, Jezierska K, Piatek-Hnat M, Lewocki M, Podraza W, El Fray M, Kot W (2016) Use of a 3D printer to create a bolus for patients undergoing tele-radiotherapy. Int J Radiat Res 14(4):287–295

    Article  Google Scholar 

  3. Łukowiak M, Jezierska K, Boehlke M, Wiecko M, Łukowiak A, Podraza W, Lewocki M, Masojć B, Falco M (2017) Utilization of a 3D printer to fabricate boluses used for electron therapy of skin lesions of the eye canthi. J Appl Clin Med Phys 18(1):76–81

    PubMed  Google Scholar 

  4. Sasaki DK, McGeachy P, Alpuche Aviles JE, McCurdy B, Koul R, Dubey A (2019) A modern mold room: meshing 3D surface scanning, digital design, and 3D printing with bolus fabrication. J Appl Clin Med Phys 20(9):78–85

    Article  Google Scholar 

  5. Park SY, Choi CH, Park JM, Chun M, Han JH, Kim JI (2016) A patient-specific polylactic acid bolus made by a 3D printer for breast cancer radiation therapy. PLoS ONE 11(12):e0168063

    Article  Google Scholar 

  6. Canters RA, Lips IM, Wendling M, Kusters M, van Zeeland M, Gerritsen RM, Poortmans P, Verhoef CG (2016) Clinical implementation of 3D printing in the construction of patient specific bolus for electron beam radiotherapy for non-melanoma skin cancer. Radiother Oncol 121(1):148–153

    Article  Google Scholar 

  7. Park JW, Yea JW (2016) Three-dimensional customized bolus for intensity-modulated radiotherapy in a patient with Kimura’s disease involving the auricle. Cancer/Radiother 20(3):205–209

    Article  CAS  Google Scholar 

  8. Kim SW, Shin HJ, Kay CS, Son SH (2014) A customized bolus produced using a 3-dimensional printer for radiotherapy. PLoS ONE 9(10):e110746

    Article  Google Scholar 

  9. Ricotti R, Ciardo D, Pansini F, Bazani A, Comi S, Spoto R, Noris S, Cattani F, Baroni G, Orecchia R, Vavassori A (2017) Dosimetric characterization of 3D printed bolus at different infill percentage for external photon beam radiotherapy. Phys Med 39:25–32

    Article  Google Scholar 

  10. Butson MJ, Cheung T, Yu P, Metcalfe P (2000) Effects on skin dose from unwanted air gaps under bolus in photon beam radiotherapy. Radiat Meas 32(3):201–204

    Article  CAS  Google Scholar 

  11. Khan Y, Villarreal-Barajas JE, Udowicz M, Sinha R, Muhammad W, Abbasi AN, Hussain A (2013) Clinical and dosimetric implications of air gaps between bolus and skin surface during radiation therapy. J Cancer Ther 4(7):1251–1255

    Article  Google Scholar 

  12. Su S, Moran K, Robar JL (2014) Design and production of 3D printed bolus for electron radiation therapy. J Appl Clin Med Phys 15(4):194–211

    Article  Google Scholar 

  13. McGeachy P, Sasaki DK, Harris C, Sharma AM, Dubey A (2017) Quality assurance tests for 3D printed bolus used in radiation therapy. Int J Radiat Oncol Biol Phys 99(2):E697–E698

    Article  Google Scholar 

  14. Burleson S, Baker J, Hsia AT, Xu Z (2015) Use of 3D printers to create a patient-specific 3D bolus for external beam therapy. J Appl Clin Med Phys 16(3):166–178

    Article  Google Scholar 

  15. Zou W, Fisher T, Zhang M, Kim L, Chen T, Narra V, Swann B, Singh R, Siderit R, Yin L, Teo BKK (2015) Potential of 3D printing technologies for fabrication of electron bolus and proton compensators. J Appl Clin Med Phys 16(3):90–98

    Article  Google Scholar 

  16. Kudchadker RJ, Antolak JA, Morrison WH, Wong PF, Hogstrom KR (2003) Utilization of custom electron bolus in head and neck radiotherapy. J Appl Clin Med Phys 4(4):321–333

    Article  CAS  Google Scholar 

  17. Charles PH, Kairn T, Crowe SB (2020) Clinical quality assurance of 3D printed patient specific radiotherapy devices. Phys Eng Sci Med 43(1):436–437. https://doi.org/10.1007/s13246-019-00826-6. Correction to: EPSM 2019, Engineering and Physical Sciences in Medicine. Phys Eng Sci Med 43(1):463. https://doi.org/10.1007/s13246-020-00846-7

    Article  Google Scholar 

  18. Dipasquale G, Poirier A, Sprunger Y, Uiterwijk JWE, Miralbell R (2018) Improving 3D-printing of megavoltage X-rays radiotherapy bolus with surface-scanner. Radiat Oncol 13(1):203

    Article  Google Scholar 

  19. Maxwell SK, Charles PH, Cassim N, Kairn T, Crowe SB (2020) Assessing the fit of 3D printed bolus from CT, optical scanner and photogrammetry methods. Phys Eng Sci Med 43:601–607

    Article  CAS  Google Scholar 

  20. Craft DF, Kry SF, Balter P, Salehpour M, Woodward W, Howell RM (2018) Material matters: analysis of density uncertainty in 3D printing and its consequences for radiation oncology. Med Phys 45(4):1614–1621

    Article  CAS  Google Scholar 

  21. Albantow C, Hargrave C, Brown A, Halsall C (2020) Comparison of 3D printed nose bolus to traditional wax bolus for cost-effectiveness, volumetric accuracy and dosimetric effect. J Med Radiat Sci 67(1):54–63

    Article  Google Scholar 

  22. Alderson SW, Lanzl LH, Rollins M, Spira J (1962) An instrumented phantom system for analog computation of treatment plans. Am J Roentgenol Radium Ther Nucl Med 87:185–195

    CAS  PubMed  Google Scholar 

  23. Binny D, Kairn T, Lancaster CM, Trapp JV, Crowe SB (2018) Photon Optimizer (PO) versus Progressive Resolution Optimizer (PRO): a conformality and complexity based comparison for Intensity Modulated Arc Therapy plans. Med Dosim 43(3):267–275

    Article  Google Scholar 

  24. Tino R, Leary M, Yeo A, Brandt M, Kron T (2019) Gyroid structures for 3D-printed heterogeneous radiotherapy phantoms. Phys Med Biol 64:21NT05

    Article  CAS  Google Scholar 

  25. Dancewicz OL, Sylvander SR, Markwell TS, Crowe SB, Trapp JV (2017) Radiological properties of 3D printed materials in kilovoltage and megavoltage photon beams. Phys Med 38:111–118

    Article  CAS  Google Scholar 

  26. Ahnesjo A, Aspradakis MM (1999) Dose calculations for external photon beams in radiotherapy. Phys Med Biol 44(11):R99–R155

    Article  CAS  Google Scholar 

  27. Dunn L, Lehmann J, Lye J, Kenny J, Kron T, Alves A, Cole A, Zifodya J, Williams I (2015) National dosimetric audit network finds discrepancies in AAA lung inhomogeneity corrections. Phys Med 31(5):435–441

    Article  Google Scholar 

  28. Crowe SB, Kairn T, Trapp JV, Fielding AL (2013) Monte Carlo evaluation of collapsed-cone convolution calculations in head and neck radiotherapy treatment plans. IFMBE Proc 39:1803–1806. https://doi.org/10.1007/978-3-642-29305-4_474

    Article  Google Scholar 

  29. Cignoni P, Callieri M, Corsini M et al (2008) MeshLab: an open-source mesh processing tool. In: Sixth Eurographics Italian Chapter conference, pp 129–136

  30. Cignoni P, Rocchini C, Scopigno R (1998) Metro: measuring error on simplified surfaces. Comput Graph Forum 17(2):167–174

    Article  Google Scholar 

  31. Aland T, Kairn T, Kenny J (2011) Evaluation of a Gafchromic EBT2 film dosimetry system for radiotherapy quality assurance. Australas Phys Eng Sci Med 34(2):251–260

    Article  CAS  Google Scholar 

  32. Spelleken E, Crowe SB, Sutherland B, Challens C, Kairn T (2018) Accuracy and efficiency of published film dosimetry techniques using a flat-bed scanner and EBT3 film. Australas Phys Eng Sci Med 41(1):117–128

    Article  CAS  Google Scholar 

  33. Kairn T (2021) Applying good software development processes in practice. In: Helmenkamp J, Bujila R, Poludniowski G (eds) Diagnostic radiology physics with MATLAB: a problem-solving approach. CRC Press, Boca Raton. https://doi.org/10.1201/9781351188197

    Chapter  Google Scholar 

  34. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675

    Article  CAS  Google Scholar 

  35. Bastawrous S, Wu L, Strzelecki B, Levin DB, Li JS, Coburn J, Ripley B (2021) Establishing quality and safety in hospital-based 3D printing programs: patient-first approach. Radiographics 41(4):1208–1229

    Article  Google Scholar 

  36. Chepelev L, Wake N, Ryan J, Althobaity W, Gupta A, Arribas E, Santiago L, Ballard DH, Wang KC, Weadock W, Ionita CN (2018) Radiological Society of North America (RSNA) 3D Printing Special Interest Group (SIG): guidelines for medical 3D printing and appropriateness for clinical scenarios. 3D Print Med 4:11

    Article  Google Scholar 

  37. Leng S, McGee K, Morris J, Alexander A, Kuhlmann J, Vrieze T, McCollough CH, Matsumoto J (2017) Anatomic modeling using 3D printing: quality assurance and optimization. 3D Print Med 3:6

    Article  Google Scholar 

  38. Van Esch A, Tillikainen L, Pyykkonen J, Tenhunen M, Helminen H, Siljamäki S, Alakuijala J, Paiusco M, Iori M, Huyskens DP (2006) Testing of the analytical anisotropic algorithm for photon dose calculation. Med Phys 33(11):4130–4148

    Article  Google Scholar 

  39. Vassiliev ON, Wareing TA, McGhee J, Failla G, Salehpour MR, Mourtada F (2010) Validation of a new grid-based Boltzmann equation solver for dose calculation in radiotherapy with photon beams. Phys Med Biol 55(3):581–598

    Article  Google Scholar 

  40. Fogliata A, Nicolini G, Clivio A, Vanetti E, Cozzi L (2011) Dosimetric evaluation of Acuros XB Advanced Dose Calculation algorithm in heterogeneous media. Radiat Oncol 6(1):82

    Article  Google Scholar 

  41. Kairn T, Livingstone AG, Crowe SB (2020) Monte Carlo calculations of radiotherapy dose in “homogeneous” anatomy. Phys Med 78:156–165. https://doi.org/10.1016/j.ejmp.2020.09.019

    Article  PubMed  Google Scholar 

  42. Ramachandran P, Tajaldeen A, Roozen K, Wanigaratne D, Taylor D, Kron T (2016) A study of dose calculation algorithms using an IPSM phantom with different density materials for in-field and out-of-field conditions. Australas Phys Eng Sci Med 39(4):1177–1178. https://doi.org/10.1007/s13246-016-0494-2

    Article  Google Scholar 

Download references

Acknowledgements

This work would not have been possible without the support of Steven R. Sylvander, whose commitment and enthusiasm carried 3D printing into the Department of Radiation Oncology at the Royal Brisbane and Women’s Hospital.

Funding

Contributions to this work from Scott B. Crowe, Paul Charles and Tania Poroa were supported by a Metro North Hospital and Health Service funded Herston Biofabrication Institute Programme Grant (no grant number).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Kairn.

Ethics declarations

Conflict of interest

All authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kairn, T., Talkhani, S., Charles, P.H. et al. Determining tolerance levels for quality assurance of 3D printed bolus for modulated arc radiotherapy of the nose. Phys Eng Sci Med 44, 1187–1199 (2021). https://doi.org/10.1007/s13246-021-01054-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-021-01054-7

Keywords

Navigation