Skip to main content
Log in

Efficient algorithm for baseline wander and powerline noise removal from ECG signals based on discrete Fourier series

  • Scientific Paper
  • Published:
Australasian Physical & Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

Electrocardiogram (ECG) signals are often contaminated with artefacts and noises which can lead to incorrect diagnosis when they are visually inspected by cardiologists. In this paper, the well-known discrete Fourier series (DFS) is re-explored and an efficient DFS-based method is proposed to reduce contribution of both baseline wander (BW) and powerline interference (PLI) noises in ECG records. In the first step, the determination of the exact number of low frequency harmonics contributing in BW is achieved. Next, the baseline drift is estimated by the sum of all associated Fourier sinusoids components. Then, the baseline shift is discarded efficiently by a subtraction of its approximated version from the original biased ECG signal. Concerning the PLI, the subtraction of the contributing harmonics calculated in the same manner reduces efficiently such type of noise. In addition of visual quality results, the proposed algorithm shows superior performance in terms of higher signal-to-noise ratio and smaller mean square error when faced to the DCT-based algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Sörnmo L, Laguna P (2005) Bioelectrical signal processing in cardiac and neurological applications, vol 8. Academic Press, Boca Raton

    Google Scholar 

  2. Cerutti S, Marchesi C (eds) (2011) Advanced methods of biomedical signal processing, vol 27. Wiley, New York

    Google Scholar 

  3. Fasano A, Villani V (2014) Baseline wander removal for bioelectrical signals by quadratic variation reduction. Sig Process 99:48–57

    Article  Google Scholar 

  4. Clifford GD, Azuaje F, McSharry P (2006) Advanced methods and tools for ECG data analysis. Artech House, Inc, Norwood

    Google Scholar 

  5. Sayadi O, Shamsollahi MB (2007) Multiadaptive bionic wavelet transform: application to ECG denoising and baseline wandering reduction. EURASIP J Adv Signal Process 2007(1):041274

    Article  Google Scholar 

  6. Thakor NV, Zhu YS (1991) Applications of adaptive filtering to ECG analysis: noise cancellation and arrhythmia detection. IEEE Trans on Biomed Eng 38(8):785–794

    Article  CAS  Google Scholar 

  7. Zhu J, Li X (2017) Electrocardiograph signal denoising based on sparse decomposition. Healthc Technol Lett 4(4):134–137

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kunt M, Rey H, Ligtenberg A (1982) Preprocessing of electrocardiograms by digital techniques. Signal Process 4(2–3):215–222

    Article  Google Scholar 

  9. Van Alste JA, Schilder TS (1985). Removal of base-line wander and power-line interference from the ECG by an efficient FIR filter with a reduced number of taps. IEEE Trans Biomed Eng 12:1052–1060

    Article  Google Scholar 

  10. Van Alste JA, Van Eck W, Herrmann OE (1986) ECG baseline wander reduction using linear phase filters. Comput Biomed Res 19(5):417–427

    Article  PubMed  Google Scholar 

  11. Warlar R, Eswaran C (1991) Integer coefficient bandpass filter for the simultaneous removal of baseline wander, 50 and 100 Hz interference from the ECG. Med Biol Eng Comput 29(3):333–336

    Article  Google Scholar 

  12. Sörnmo L (1993) Time-varying digital filtering of ECG baseline wander. Med Biol Eng Comput 31(5):503–508

    Article  PubMed  Google Scholar 

  13. Keselbrener L, Keselbrener M, Akselrod S (1997) Nonlinear high pass filter for R-wave detection in ECG signal. Med Eng Phys 19(5):481–484

    Article  CAS  PubMed  Google Scholar 

  14. Ma WK, Zhang YT, Yang FS (1999) A fast recursive-least-squares adaptive notch filter and its applications to biomedical signals. Med Biol Eng Comput 37(1):99–103

    Article  CAS  PubMed  Google Scholar 

  15. Taouli SA, Bereksi-Reguig F (2010) Noise and baseline wandering suppression of ECG signals by morphological filter. J Med Eng Technol 34(2):87–96

    Article  CAS  PubMed  Google Scholar 

  16. Hu X, Xiao Z, Zhang N (2011) Removal of baseline wander from ECG signal based on a statistical weighted moving average filter. J Zhejiang Univ Sci C 12(5):397–403

    Article  Google Scholar 

  17. Poornachandra S, Kumaravel N (2008) A novel method for the elimination of power line frequency in ECG signal using hyper shrinkage function. Digit Signal Proc 18(2):116–126

    Article  Google Scholar 

  18. German-Sallo Z (2011). ECG signal baseline wander removal using wavelet analysis. In International Conference on Advancements of Medicine and Health Care through Technology (pp. 190–193). Springer, Berlin Heidelberg

  19. El B, Latif O, Elmansouri R K, et al (2017) ECG signal performance de-noising assessment based on threshold tuning of dual-tree wavelet transform. Biomed Eng Online 16:1–18. 18p

    Article  Google Scholar 

  20. Singh O, Sunkaria RK1 (2017). ECG signal denoising via empirical wavelet transform. Australas Phys Eng Sci Med. https://doi.org/10.1007/s13246-016-0510-6

  21. Shin HS, Lee C, Lee M (2010) Ideal filtering approach on DCT domain for biomedical signals: index blocked DCT filtering method (IB-DCTFM). J Med Syst 34(4):741–753

    Article  PubMed  Google Scholar 

  22. Shyu KK, Lee PL, Lee MH, Huang CM (2009) Implementation of EMD Algorithm for ECG Noise Reduction. In: World Congress on Medical Physics and Biomedical Engineering, September 7–12, 2009, Munich, Germany. Springer, Berlin Heidelberg, pp 1095–1098

    Chapter  Google Scholar 

  23. Pal S, Mitra M (2012) Empirical mode decomposition based ECG enhancement and QRS detection. Comput Biol Med 42(1):83–92

    Article  PubMed  Google Scholar 

  24. Mihov G, Dotsinsky I (2008) Power-line interference elimination from ECG in case of non-multiplicity between the sampling rate and the power-line frequency. Biomed Signal Process Control 3(4):334–340

    Article  Google Scholar 

  25. Zivanovic M, González-Izal M (2013) Simultaneous powerline interference and baseline wander removal from ECG and EMG signals by sinusoidal modeling. Med Eng Phys 35(10):1431–1441

    Article  PubMed  Google Scholar 

  26. Proakis JG, Manolakis DG (2007), Digital signal processing: principles, algorithms & applications, 4 edn. Prentice Hall Inc., Upper Saddle River

    Google Scholar 

  27. Sadhukhan D, Pal S, Mitra M (2015) Electrocardiogram data compression using adaptive bit encoding of the discrete Fourier transforms coefficients. IET Sci Meas Technol 9(7):866–874

    Article  Google Scholar 

  28. Peterek T, Prauzek M, Penhaker M (2010) Baseline wander elimination by Fourier series. In Signal Processing Systems (ICSPS), 2010 2nd International Conference on (Vol. 1, pp. V1–365). IEEE

  29. Sadhukhan D, Mitra M (2014) ECG noise reduction using Fourier coefficient suppression. In Control, Instrumentation, Energy and Communication (CIEC), 2014 International Conference on (pp. 142–146). IEEE

  30. Piskorowski J (2012) Suppressing harmonic powerline interference using multiple-notch filtering methods with improved transient behavior. Measurement 45(6):1350–1361

    Article  Google Scholar 

  31. Moody GB, Mark RG (2001) The impact of the MIT-BIH arrhythmia database. IEEE Eng Med Biol Mag 20(3):45–50

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Bahaz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahaz, M., Benzid, R. Efficient algorithm for baseline wander and powerline noise removal from ECG signals based on discrete Fourier series. Australas Phys Eng Sci Med 41, 143–160 (2018). https://doi.org/10.1007/s13246-018-0623-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-018-0623-1

Keywords

Navigation