Skip to main content
Log in

Parametric Imaging for the Assessment of Cardiac Motion: A Review

  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

The assessment of wall motion abnormalities such as hypokinesia or dyskinesia and the identification of their extent as well as their degree of severity allow an accurate evaluation of several ischemic heart diseases and an early diagnosis of heart failure. These dysfunctions are usually revealed by a drop of contraction indicating a regional hypokinesia or a total absence of the wall motion in case of akinesia. The discrimination between these contraction abnormalities plays also a significant role in the therapeutic decision through the differentiation between the infarcted zones, which have lost their contractile function, and the stunned areas that still retain viable myocardial tissues. The lack of a reliable method for the evaluation of wall motion abnormalities in cardiac imaging presents a major limitation for a regional assessment of the left ventricular function. In the past years, several techniques were proposed as additional tools for the local detection of wall motion deformation. Among these approaches, the parametric imaging is likely to represent a promising technique for the analysis of a local contractile function. The aim of this paper is to review the most recent techniques of parametric imaging computation developed in cardiac imaging and their potential contributions in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Part of this figure is modified, with permission, from Ref. 8.

Figure 5

Part of this figure is modified, with permission, from Ref. 8.

Figure 6

Modified from a figure previously published in Ref. 10 with permission of Springer Nature publications, 2017.

Similar content being viewed by others

Abbreviations

A:

Anterior

AHA:

American Heart Association

AL:

Anterolateral

AS:

Anteroseptal

CMRI:

Cardiac magnetic resonance imaging

EDV:

End diastolic volume

ESV:

End systolic volume

FAMIS:

Factor Analysis of medical image sequences

I:

Inferior

IL:

Inferolateral

IS:

Inferoseptal

LBBB:

Left bundle branch block

LL:

Look-locker

LV:

Left ventricular

LVEF:

Left ventricular ejection fraction

MOLLI:

Modified look-locker inversion recovery

PAMM:

Parametric analysis of main motion

PET:

Positron emission tomography

RFAC:

Regional fractional area change

SHASHA:

Saturation recovery single-shot acquisition

SHMOLLI:

Shortened modified look-locker inversion recovery

SPECT:

Single photon emission computed tomography

SV:

Stroke volume

WPW:

Wolff Parkinson White

References

  1. Ahrens, P. J., F. H. Sheehan, J. V. Dahl, and R. Uebis. Extension of hypokinesia into angiographically perfused myocardium in patients with acute infarction. J. Am. Coll. Cardiol. 22(4):1010–1015, 1993.

    Article  Google Scholar 

  2. Alessandrini, M., A. Basarab, H. Liebgott, and O. Bernard. Myocardial motion estimation from medical images using the monogenic signal. IEEE Trans. Image Process. 22:1084–1095, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  3. Attili, A. K., A. Schuster, E. Nagel, J. H. C. Reiber, and R. J. van der Geest. Quantification in cardiac MRI: advances in image acquisition and processing. Int. J. Cardiovasc. Imaging 26:27–40, 2010.

    Article  Google Scholar 

  4. Barkhausen, J., S. G. Ruehm, M. Goyen, T. Buck, G. Laub, and J. F. Debatin. MR evaluation of ventricular function: true fast imaging with steady-state precession versus fast low-angle shot cine MR imaging: feasibility study. Radiology 219:264–269, 2001.

    Article  Google Scholar 

  5. Bedrosian, E. The analytic signal representation of modulated waveforms. In Proceedings of the IRE, vol. 50, pp. 2071–2076, 1962.

  6. Bekeredjian, R., T. Hilbel, A. Filusch, A. Hansen, A. Benz, J. Zehelein, and H. F. Kuecherer. Fourier phase and amplitude analysis for automated objective evaluation of myocardial contrast echocardiograms. Int. J. Cardiovasc. Imaging 19(2):117–128, 2003.

    Article  Google Scholar 

  7. Bellenger, N. G., M. I. Burgess, S. G. Ray, A. Lahiri, A. J. S. Coats, J. G. F. Cleland, et al. Comparison of left ventricular ejection fraction and volumes in heart failure by echocardiography, radionuclide ventriculography and cardiovascular magnetic resonance. Eur. Heart J. 21:1387–1396, 2000.

    Article  Google Scholar 

  8. Ben Ameur, N., N. Khlifa, and T. Kraiem. Parametric images for the assessment of cardiac kinetics by magnetic resonance imaging (MRI). IEEE Image Processing Applications and Systems Conference (IPAS), 5–7 November, 2014.

  9. Benali, H., I. Buvat, F. Frouin, J. P. Bazin, and R. Di Paola. Foundations of factor analysis of medical image sequences: a unified approach and some practical implications. Image Vis. Comput. 12:375–385, 1994.

    Article  Google Scholar 

  10. Benameur, N., E. G. Caiani, Y. Arous, N. B. Abdallah, and T. Kraiem. Interpretation of cardiac wall motion from cine-MRI combined with parametric imaging based on the Hilbert transform. Magn. Reson. Mater. Phys. 30:347–357, 2017.

    Article  Google Scholar 

  11. Bock, J., A. Frydrychowicz, A. F. Stalder, T. A. Bley, H. Burkhardt, J. Hennig, et al. 4D phase contrast MRI at 3 T: effect of standard and blood-pool contrast agents on SNR, PC-MRA, and blood flow visualization. Magn. Reson. Med. 63(2):330–338, 2010.

    Article  Google Scholar 

  12. Bohnen, S., U. K. Radunski, G. K. Lund, F. Ojeda, Y. Looft, M. Senel, et al. Tissue characterization by T1 and T2 mapping cardiovascular magnetic resonance imaging to monitor myocardial inflammation in healing myocarditis. Eur. Heart J. Cardiovasc. Imaging 18(7):744–751, 2017.

    Article  Google Scholar 

  13. Boudraa, A. O., F. Behloul, M. Janier, E. Canet, J. Champier, J. P. Roux, et al. Temporal covariance analysis of first-pass contrast enhanced myocardial magnetic resonance images. Comput. Biol. Med. 31:133–142, 2001.

    Article  Google Scholar 

  14. Boudraaa, A. O., J. Champierc, M. Djebalid, F. Behloule, and A. Beghdadi. Analysis of dynamic nuclear cardiac images by covariance function. Comput. Med. Imaging Gr. 23:181–191, 1999.

    Article  Google Scholar 

  15. Braunwald, E., and R. A. Kloner. The stunned myocardium: prolonged, postischemic ventricular dysfunction. Circulation 66:1146–1149, 1982.

    Article  Google Scholar 

  16. Caiani, E. G., R. M. Lang, and C. E. Korcarz. Echocardiographic evaluation of left ventricular wall motion using still frame parametric imaging. Comput. Cardiol. 28:89–92, 2001.

    Google Scholar 

  17. Caiani, E. G., R. M. Lang, C. E. Korcarz, J. M. DeCara, L. Weinert, K. A. Collins, K. A. Spencer, and V. Mor-Avi. Improvement in echocardiographic evaluation of left ventricular wall motion using still-frame parametric imaging. J. Am. Soc. Echocardiogr. 9:926–934, 2002.

    Article  Google Scholar 

  18. Caiani, E. G., E. Toledo, P. MacEneaney, D. Bardo, S. Cerutti, R. M. Lang, et al. Automated interpretation of regional left ventricular wall motion from cardiac magnetic resonance images. J. Cardiovasc. Magn. Reson. 8:427–433, 2006.

    Article  Google Scholar 

  19. Caiani, E. G., E. Toledo, P. MacEneaney, K. A. Collins, R. M. Lang, and V. Mor-Avi. The role of still frame parametric imaging in magnetic resonance: assessment of left ventricular wall motion by non cardiologists. J. Cardiovasc. Magn. Reson. 6:619–625, 2004.

    Article  Google Scholar 

  20. Cardot, J. C., P. Berthout, J. Verdenet, A. Bidet, R. Faivre, J. P. Bassand, et al. Temporal Fourier analysis applied to equilibrium radionuclide cineangiography. Importance in the study of global and regional left ventricular wall motion. Eur. J. Nucl. Med. 7:353–358, 1982.

    Article  Google Scholar 

  21. Carstensen, S., U. Hoest, L. Kjoeller-Hansen, K. Saunamäki, D. Atar, and H. Kelbaek. Comparison of methods of fractional area change for detection of regional left ventricular dysfunction. Int. J. Cardiovasc. Imaging 16:257–266, 2000.

    Article  Google Scholar 

  22. Caudron, J., J. Fares, F. Bauer, and J. N. Dacher. Evaluation of left ventricular diastolic function with cardiac MR imaging. RadioGraphics 31:259–261, 2001.

    Google Scholar 

  23. Cawley, P. J., J. H. Maki, and C. M. Otto. Cardiovascular magnetic resonance imaging for valvular heart disease: technique and validation. Circulation 119:468–478, 2009.

    Article  Google Scholar 

  24. Cerqueira, M. D., N. J. Weissman, V. Dilsizian, A. K. Jacobs, S. Kaul, W. K. Laskey, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals for the cardiac imaging committee of the council on clinical cardiology of the American Heart Association. Circulation 105:539–542, 2002.

    Article  Google Scholar 

  25. Chen, C., D. Li, C. Miao, J. Feng, Y. Zhou, K. Cao, et al. LV dyssynchrony as assessed by phase analysis of gated SPECT myocardial perfusion imaging in patients with Wolff–Parkinson–White syndrome. Eur. J. Nucl. Med. Mol. Imaging 39:1191–1198, 2012.

    Article  Google Scholar 

  26. Cheng, X., Y. Ma, C. Liu, X. Zhang, and Y. Guo. Research on heart sound identification technology. Sci. China Inf. Sci. 55:281–292, 2012.

    Article  MathSciNet  Google Scholar 

  27. Chow, K., J. A. Flewitt, J. D. Green, J. J. Pagano, M. G. Friedrich, and R. B. Thompson. Saturation recovery single-shot acquisition (SASHA) for myocardial T(1) mapping. Magn. Reson. Med. 71(6):2082–2095, 2014.

    Article  Google Scholar 

  28. Clarysse, P., and P. Friboulet. Multi-modality cardiac imaging: processing and analysis. Hoboken: ISTE Ltd and Wiley, 2015.

    Book  Google Scholar 

  29. Cong, J., T. Fan, X. Yang, J. W. Squires, G. Cheng, L. Zhangand, and Z. Zhang. Structural and functional changes in maternal left ventricle during pregnancy: a three-dimensional speckle-tracking echocardiography study. Cardiovasc Ultrasound 13:6, 2015.

    Article  Google Scholar 

  30. Constantinides, C., Y. Chenoune, E. Mousseaux, E. Roullot, and F. Frouin. Automated heart localization for the segmentation of the ventricular cavities on cine magnetic resonance images. Comput. Cardiol. 37:911–914, 2010.

    Google Scholar 

  31. Dabir, D., N. Child, A. Kalra, T. Rogers, R. Gebker, A. Jabbour, et al. Reference values for healthy human myocardium using a T1 mapping methodology: results from the international T1 multicenter cardiovascular magnetic resonance study. J. Cardiovasc. Magn. Reson. 16:69, 2014.

    Article  Google Scholar 

  32. Di Paola, R., J. P. Bazin, F. Aubry, A. Aurengo, F. Cavailloles, J. Y. Herry, et al. Handling of dynamic sequences in nuclear medicine. IEEE Trans. Nucl. Sci. 29:1310–1321, 1982.

    Article  Google Scholar 

  33. Diebold, B., A. Delouche, E. Abergel, H. Raffoul, H. Diebold, and F. Frouin. Optimization of factor analysis of the left ventricle in echocardiography for detecting wall motion abnormalities. Ultrasound Med. Biol. 31(12):1597–1606, 2005.

    Article  Google Scholar 

  34. Doroslovački, M. I. On nontrivial analytic signals with positive instantaneous frequency. Signal Process. 3:655–658, 2003.

    Article  MATH  Google Scholar 

  35. Eisenbrey, J. R., J. K. Dave, D. A. Merton, J. P. Palazzo, A. L. Hall, and F. Forsberg. Parametric imaging using subharmonic signals from ultrasound contrast agents in patients with breast lesions. J. Ultrasound Med. 30(1):85–92, 2011.

    Article  Google Scholar 

  36. El-Berbari, R., N. Kachenoura, A. Redheuil, A. Giron, E. Mousseaux, A. Herment, et al. Automated estimation of regional mean transition times and radial velocities from cine magnetic resonance images: evaluation in normal subjects. J. Magn. Reson. Imaging 30:236–242, 2009.

    Article  Google Scholar 

  37. Ferreira, V. M., R. S. Wijesurendra, A. Liu, A. Greiser, B. Casadei, M. D. Robson, et al. Systolic ShMOLLI myocardial T1-mapping for improved robustness to partial-volume effects and applications in tachyarrhythmias. J. Cardiovasc. Magn. Reson. 28:17–77, 2015.

    Google Scholar 

  38. Fischbach, R., K. U. Juergens, M. Ozgun, D. Maintz, M. Grude, H. Seifarth, et al. Assessment of regional left ventricular function with multi detector-row computed tomography versus magnetic resonance imaging. Eur. Radiol. 17:1009–1017, 2007.

    Article  Google Scholar 

  39. Frouin, F., A. De Cesare, Y. Bouchareb, A. Todd-Pokropek, and A. Herment. Spatial regularization applied to factor analysis of medical image sequences (FAMIS). Phys. Med. Biol. 44:2289–2306, 1999.

    Article  Google Scholar 

  40. Frouin, F., A. Delouche, H. Raffoul, H. Diebold, E. Abergel, and B. Diebold. Factor analysis of the left ventricle by echocardiography (FALVE): a new tool for detecting regional wall motion abnormalities. Eur. J. Echocardiogr. 5(5):335–346, 2004.

    Article  Google Scholar 

  41. Fujii, J., H. Sato, H. Sawada, and H. Takada. Echocardiographic assessment of left ventricular wall motion in myocarditis. Heart Vessels 1:116–121, 1985.

    Article  Google Scholar 

  42. Gabor, D. Theory of communication. J. Inst. Electr. Eng. 93:429–457, 1946.

    Google Scholar 

  43. Hamlin, S. A., T. S. Henry, B. P. Little, S. Lerakis, and A. E. Stillman. Mapping the future of cardiac MR imaging: case-based review of T1 and T2 mapping techniques. Radiographics 34:1594–1611, 2014.

    Article  Google Scholar 

  44. Hamrouni, K., and N. Khlifa. Two methods for analysis of dynamic scintigraphic images of the heart. Int. Arab. J. Inf. Technol. 3:119–125, 2006.

    Google Scholar 

  45. Hansen, C. L. Limitations of parametric modeling of the left ventricle using first harmonic analysis: possible role for gaussian modeling. J. Nucl. Cardiol. 21(4):723–729, 2014.

    Article  Google Scholar 

  46. Harms, H. J., M. C. Huisman, P. Knaapen, A. A. Lammertsma, and M. Lubberink. Parametric imaging of myocardial blood flow and viability using [15O] H2O and PET/CT. Imaging Med 3:711–724, 2011.

    Article  Google Scholar 

  47. Heusch, G., and R. Schulz. Characterization of hibernating and stunned myocardium. Eur. Heart. J. 18:102–110, 1997.

    Article  Google Scholar 

  48. Hoffmann, R., F. Bertelshofer, C. Siegl, R. Janka, R. Grosso, and G. Greiner. Automated heart localization in cardiac cine MR data. In: BILDVERARBEITUNG für die Medizin 2016. Informatik aktuell, edited by T. Tolxdorff, T. Deserno, H. Handels, and H. P. Meinzer. Berlin: Springer, 2016.

    Google Scholar 

  49. Janier, M. F., A. N. Mazzadi, M. Lionnet, F. Frouin, X. André-Fouët, L. Cinotti, et al. Factor analysis of medical image sequences improves evaluation of first-pass MR imaging acquisitions for myocardial perfusion. Acad. Radiol. 9(1):26–39, 2002.

    Article  Google Scholar 

  50. Jeanette, S. M., A. B. David, B. Jens, D. F. Scott, A. F. Mark, G. F. Matthias, et al. Standardized image interpretation and post processing in cardiovascular magnetic resonance: Society for Cardiovascular Magnetic Resonance (SCMR) board of trustees task force on standardized post processing. J. Cardiovasc. Magn. Reson. 15:35, 2013.

    Article  Google Scholar 

  51. Jeanne, M. D., and M. L. Roberto. Interpretation of left ventricular wall motion during stress testing. Echocardiography 20(7):643–658, 2003.

    Article  Google Scholar 

  52. Kachenoura, N., A. Delouche, C. Ruiz Dominguez, O. Nardi, F. Frouin, and B. Diebold. An automated four-point scale scoring of segmental wall motion in echocardiography using quantified parametric images. Phys. Med. Biol. 55:5753–5766, 2010.

    Article  Google Scholar 

  53. Kachenoura, N., V. Mor-Avi, F. Frouin, A. Delouche, T. S. Polonsky, S. D’Amore, et al. Diagnostic value of parametric imaging of left ventricular wall motion from contrast-enhanced echocardiograms in patients with poor acoustic windows. J. Am. Soc. Echocardiogr. 22(3):276–283, 2009.

    Article  Google Scholar 

  54. Kachenoura, N., V. Mor-Avi, F. Frouin, A. Delouche, T. S. Tamar, S. D’Amore, B. Diebold, and R. M. Lang. Diagnostic value of parametric imaging of left ventricular wall motion from contrast-enhanced echocardiograms in patients with poor acoustic windows. Comput. Cardiol. 35:109–112, 2008.

    Google Scholar 

  55. Kachenoura, N., A. Redheuil, D. Balvay, C. Ruiz Dominguez, A. Herment, E. Mousseaux, and F. Frouin. Evaluation of regional myocardial function using automated wall motion analysis of cine MR images: contribution of parametric images, contraction times and radial velocities. J. Magn. Reson. Imaging 26:1127–1132, 2007.

    Article  Google Scholar 

  56. Kachenoura, N., A. Redheuil, C. Ruiz Dominguez, and F. Frouin. Parametric analysis of main motion: application to the assessment of left ventricular wall motion by MR imaging. IEEE International Symposium on Biomedical Imaging: Nano to Macro, USA, pp. 460–463, 18 April 2004.

  57. Kim, P. K., Y. J. Hong, D. J. Im, Y. J. Suh, C. H. Park, J. Y. Kim, et al. Myocardial T1 and T2 mapping: techniques and clinical applications. Korean J. Radiol. 18(1):113–131, 2017.

    Article  Google Scholar 

  58. King, F. W. Hilbert Transforms. Cambridge: Cambridge University Press, 2009.

    Book  MATH  Google Scholar 

  59. Knackstedt, C., S. C. Bekkers, G. Schummers, M. Schreckenberg, D. Muraru, L. P. Badano, et al. Fully automated versus standard tracking of left ventricular ejection fraction and longitudinal strain. J. Am. Coll. Cardiol. 66:1456–1466, 2015.

    Article  Google Scholar 

  60. Lang, R. M., L. P. Badano, V. Mor-Avi, J. Afilalo, A. Armstrong, L. Ernande, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 28:1–39, 2015.

    Article  Google Scholar 

  61. Lassen, N. A., H. Lida, and I. Kanno. Parametric imaging in nuclear medicine. Ann. Nucl. Med. 9:167–170, 1995.

    Article  Google Scholar 

  62. Lee, K. H. Computers in Nuclear Medicine: A Practical Approach (2nd ed.). Reston, VA: The Society of Nuclear Medicine, 2004.

    Google Scholar 

  63. Leighton, R. F., S. M. Wilt, and R. P. Lewis. Detection of hypokinesis by a quantitative analysis of left ventricular cineangiograms. Circulation 50:121–127, 1974.

    Article  Google Scholar 

  64. Lomsky, M., L. Johansson, P. Gjertsson, J. Björk, and L. Edenbrandt. Normal limits for left ventricular ejection fraction and volumes determined by gated single photon emission computed tomography—a comparison between two quantification methods. Clin. Physiol. Funct. Imaging 28:169–173, 2008.

    Article  Google Scholar 

  65. Look, D., and D. Locker. Time saving in measurement of NMR and EPR relaxation times. Rev. Sci. Instrum. 41:250–251, 1970.

    Article  Google Scholar 

  66. Lota, A. S., P. D. Gatehouse, and R. H. Mohiaddin. T2 mapping and T2* imaging in heart failure. Heart Fail. Rev. 22(4):431–440, 2017.

    Article  Google Scholar 

  67. Luijnenburg, S. E., D. R. Visser, A. Moelker, H. W. Vliegen, B. J. M. Mulder, and W. A. Helbing. Intra-observer and interobserver variability of biventricular function, volumes and mass in patients with congenital heart disease measured by CMR imaging. Int. J. Cardiovasc. Imaging 26:57–64, 2010.

    Article  Google Scholar 

  68. Mand, B. D., and D. G. Watts. Nonlinear regression analysis and its applications. New York: Wiley, 1988.

    Google Scholar 

  69. Manrique, A., E. Tapon, G. Derumeaux, A. Cribier, and J. N. Véra Pand Dacher. Cine-MR Fourier phase imaging for quantification of regional wall asynergy in patients with anterior myocardial infarction. J. Comput. Assist. Tomogr. 26(5):676–680, 2002.

    Article  Google Scholar 

  70. Messroghli, D. R., T. Niendorf, J. Schulz-Menger, R. Dietz, and M. G. Friedrich. T1 mapping in patients with acute myocardial infarction. J. Cardiovasc. Magn. Reson. 5:353–359, 2003.

    Article  Google Scholar 

  71. Messroghli, D. R., A. Radjenovic, S. Kozerke, D. M. Higgins, M. U. Sivananthan, and J. P. Ridgway. Modified look-locker inversion recovery (MOLLI) for high-resolution T1 mapping of the heart. Magn. Reson. Med. 52:141–146, 2004.

    Article  Google Scholar 

  72. Mor-Avi, V., S. Kirk, G. John, and D. Anthony. Normal values of regional left ventricular endocardial motion: multicenter color kinesis study. Am. J. Physiol. Heart Circ. Physiol. 279:H2464–H2476, 2004.

    Article  Google Scholar 

  73. Nacif, M. S., E. B. Turkbey, N. Gai, S. Nazarian, R. J. van der Geest, R. A. Noureldin, et al. Myocardial T1 mapping with MRI: comparison of look-locker and MOLLI sequences. J. Magn. Reson. Imaging 34(6):1367–1373, 2011.

    Article  Google Scholar 

  74. Nakajima, K., H. Bunko, A. Tada, J. Taki, N. Tonami, K. Hisada, et al. Phase analysis in the Wolff–Parkinson–White syndrome with surgically proven accessory conduction pathways: concise communication. J. Nucl. Med. 25:7–13, 1984.

    Google Scholar 

  75. Okayama, S., T. Nakano, S. Uemura, S. Fujimoto, S. Somekawa, M. Watanabe, et al. Evaluation of left ventricular diastolic function by fractional area change using cine cardiovascular magnetic resonance: a feasibility study. J. Cardiovasc. Magn. Reson. 15:87, 2013.

    Article  Google Scholar 

  76. Perea Palazón, R. J., J. T. Ortiz Pérez, S. Prat González, T. M. de Caralt Robira, M. T. Cibeira López, and M. Solé Arqués. Parametric techniques for characterizing myocardial tissue through magnetic resonance imaging (Part 1): T1 mapping. Radiologia 58:164–177, 2016.

    Article  Google Scholar 

  77. Perea Palazón, R. J., M. Solé Arqués, S. Prat González, T. M. de Caralt Robira, M. T. Cibeira López, and J. T. Ortiz Pérez. Parametric methods for characterizing myocardial tissue by magnetic resonance imaging (part 2): T2 mapping. Radiologia 57(6):471–479, 2015.

    Article  Google Scholar 

  78. Picinbono, B. On instantaneous amplitude and phase of signals. IEEE Trans. Signal Process. 42:552–560, 2002.

    Google Scholar 

  79. Piechnik, S. K., V. M. Ferreira, E. Dall’Armellina, L. E. Cochlin, A. Greiser, S. Neubauer, et al. Shortened modified look-locker inversion recovery (ShMOLLI) for clinical myocardial T1-mapping at 1.5 and 3 T within a 9 heartbeat breathhold. J. Cardiovasc. Magn. Reson. 19:12–69, 2010.

    Google Scholar 

  80. Poularikas, A. D. The Transforms and Applications Handbook (3rd ed.). Boca Raton: CRC Press, 2010.

    Book  MATH  Google Scholar 

  81. Pujadas, S., G. P. Reddy, O. Weber, J. J. Lee, and C. B. Higgins. MR imaging assessment of cardiac function. J. Magn. Reson. Imaging 19(6):789–799, 2004.

    Article  Google Scholar 

  82. Radenkovic, D., S. Weingärtner, L. Ricketts, and J. C. Moon. Captur G.T1 mapping in cardiac MRI. Heart Fail. Rev. 22(4):415–430, 2017.

    Article  Google Scholar 

  83. Ramaiah, V. L., B. Harish, H. V. Sunil, J. Selvakumar, A. G. Ravi Kishore, and G. Nair. Fourier phase analysis on equilibrium gated radionuclide ventriculography: range of phase spread and cut-off limits in normal individuals. Indian J. Nucl. Med. 26:131–134, 2011.

    Article  Google Scholar 

  84. Redheuil, A. B., N. Kachenoura, R. Laporte, A. Azarine, X. Lyon, O. Jolivet, F. Frouin, and E. Mousseaux. Interobserver variability in assessing segmental function can be reduced by combining visual analysis of CMR cine sequences with corresponding parametric images of myocardial contraction. J. Cardiovasc. Magn. Reson. 9:863–872, 2007.

    Article  Google Scholar 

  85. Reza, V., D. Kakhki, and S. R. Zakavi. Normal Values of left ventricular functional indices in gated 99mTc-MIBI myocardial perfusion SPECT. Eur. J. Nucl. Med. Mol. Imaging 35:S241, 2008.

    Google Scholar 

  86. Robert, E. E. An epidemiological assessment of bundle–branich block. Circulation 34:1081–1087, 1966.

    Article  Google Scholar 

  87. Roberto, M. L., B. Michelle, and B. D. Richard. Recommendations for chamber quantification: a report from the American Society of Echocardiography’s guidelines and standards committee and the chamber quantification writing group, developed in conjunction with the European association of echocardiography, a branch of the European Society of Cardiology. J. Am. Soc. Echocardiogr. 18:1440–1463, 2005.

    Article  Google Scholar 

  88. Roujol, S., S. Weingärtner, M. Foppa, K. Chow, K. Kawaji, L. H. Ngo, et al. Accuracy, precision, and reproducibility of four T1 mapping sequences: a headto-head comparison of MOLLI, ShMOLLI, SASHA, and SAPPHIRE. Radiology 272(3):683–689, 2014.

    Article  Google Scholar 

  89. Ruiz Dominguez, C., F. Frouin, O. Gérard, P. Lim, B. Diebold, and A. Herment. Parametric analysis of main motion to study the regional wall motion of the left ventricle in echocardiography. International Workshop on Functional Imaging and Modeling of the Heart, pp. 173–183, 18 June 2003.

  90. Ruiz Dominguez, C., N. Kachenoura, A. De Cesare, A. Delouche, P. Lim, O. Gérard, et al. Assessment of left ventricular contraction by parametric analysis of main motion (PAMM): theory and application for echocardiography. Phys. Med. Biol. 50:3277–3296, 2005.

    Article  Google Scholar 

  91. Salerno, M., and C. M. Kramer. Advances in parametric mapping with CMR imaging. JACC Cardiovasc. Imaging 6(7):806–822, 2013.

    Article  Google Scholar 

  92. Santas, E., E. Núñez, and J. Núñez. Role of functional mitral regurgitation in heart failure with preserved ejection fraction: an unrecognized protagonist? Eur. J. Heart Fail. 19(2):290, 2016.

    Article  Google Scholar 

  93. Sheehan, F. H. Left ventricular dysfunction in acute myocardial infarction due to isolated left circumflex coronary artery stenosis. Am. J. Cardiol. 64(8):440–447, 1989.

    Article  Google Scholar 

  94. Sigel, H., W. Nechwatal, P. Kress, and M. Stauch. Interobserver and intermethod variation in evaluation of regional wall motion of the left ventricle. Cardiovasc. Intervent. Radiol. 6:14–19, 1983.

    Article  Google Scholar 

  95. Spies, H. and J. L. Barron. Evaluating certainties in image intensity differentiation for optical flow. First Canadian Conference on Computer and Robot Vision, pp. 408–416, May 17–19, 2004.

  96. Thomas, J. D., and Z. B. Popović. Assessment of left ventricular function by cardiac ultrasound. J. Am. Coll. Cardiol. 48:2012–2025, 2006.

    Article  Google Scholar 

  97. Underwood, S. R., R. S. Rees, P. E. Savage, R. H. Klipstein, D. N. Firmin, K. M. Fox, et al. Assessment of regional left ventricular function by magnetic resonance. Br. Heart J. 56:334–340, 1986.

    Article  Google Scholar 

  98. Usman, A. A., M. Wasielewski, J. D. Collins, M. S. Galizia, A. R. Popescu, and J. C. Carr. Clinical utility of cardiac magnetic resonance T2 mapping for acute myocardial edema. J. Cardiovasc. Magn. Reson. 13(Suppl 1):O101, 2011.

    Article  Google Scholar 

  99. Wandt, B., L. Bojö, K. Tolagen, and B. Wranne. Echocardiographic assessment of ejection fraction in left ventricular hypertrophy. Heart 82:192–198, 1999.

    Article  Google Scholar 

  100. Xavier, M., A. Lalande, P. M. Walker, F. Brunotte, and L. Legrand. An adapted optical flow algorithm for robust quantification of cardiac wall motion from standard cine-MR examinations. IEEE Trans. Inf. Technol. Biomed. 16:859–868, 2012.

    Article  Google Scholar 

  101. Zhong, L., J. M. Zhang, X. Zhao, R. San Tan, and M. Wan. Automatic localization of the left ventricle from cardiac cine magnetic resonance imaging: a new spectrum-based computer-aided tool. PLoS ONE 9(4):e92382, 2014.

    Article  Google Scholar 

  102. Zygmund, A. Trigonometric Series (3rd ed.). Cambridge: Cambridge University Press, 2002.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narjes Benameur.

Ethics declarations

Conflict of interest

All authors declare that they have no conflicts of interest.

Research involving human and animal studies

This article does not contain any studies with animals and humans performed by any of the authors.

Additional information

Associate Editors Zhongjun Wu and Ajit P. Yoganathan oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benameur, N., Caiani, E.G., Arous, Y. et al. Parametric Imaging for the Assessment of Cardiac Motion: A Review. Cardiovasc Eng Tech 9, 377–393 (2018). https://doi.org/10.1007/s13239-018-0362-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-018-0362-1

Keywords

Navigation