Skip to main content
Log in

Biological and Physical Factors Involved in the Maturation of Arteriovenous Fistula for Hemodialysis

  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

One of the most important limitations of hemodialysis (HD) treatment is the vascular access (VA) that is used to connect the patient’s blood vessels to the extracorporeal circulation. The arteriovenous fistula (AVF) obtained with native vessels is the VA of choice for the low incidence of infections and the long-term patency, but it is affected by high incidence of non-maturation or primary failure. Before use for cannulation, AVF must undergo vascular remodeling, with progressive increase in vessel diameter, to accommodate the increase in blood flow. A growing body of evidence indicates that AVF maturation is related to the response of endothelial cells to changes in blood flow and wall shear stress. In the present report we examine the experimental and clinical evidences on the mechanisms that play a role in vascular remodeling during AVF maturation. The physical and biological factors that develop upon arteriovenous surgical connection affect endothelial and smooth muscle cell function, as well as extracellular matrix remodeling. They can explain to a great extent the process of vascular remodeling and put more light on cellular mechanisms of vessel wall adaptation. The understanding of these phenomena, besides indicating the reasons for non-maturation and primary failure, may be fundamental in the future to ameliorate clinical outcomes of AVF creation, with a great impact on the clinical management of HD patients and their quality of life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ali, F., M. Zakkar, K. Karu, E. A. Lidington, S. S. Hamdulay, J. J. Boyle, et al. Induction of the cytoprotective enzyme heme oxygenase-1 by statins is enhanced in vascular endothelium exposed to laminar shear stress and impaired by disturbed flow. J. Biol. Chem. 284:18882–18892, 2009.

    Article  Google Scholar 

  2. Asif, A., P. Roy-Chaudhury, and G. A. Beathard. Early arteriovenous fistula failure: a logical proposal for when and how to intervene. CJASN 1:332–339, 2006.

    Article  Google Scholar 

  3. Atkins, G. B., and D. I. Simon. Interplay between NF-kappaB and Kruppel-like factors in vascular inflammation and atherosclerosis: location, location, location. J. Am. Heart Assoc. 2:e000290, 2013.

    Article  Google Scholar 

  4. Badero, O. J., M. O. Salifu, H. Wasse, and J. Work. Frequency of swing-segment stenosis in referred dialysis patients with angiographically documented lesions. Am. J. Kidney Dis. Off. J. Natl. Kidney Found. 51:93–98, 2008.

    Article  Google Scholar 

  5. Bergan, J. J., L. Pascarella, and G. W. Schmid-Schonbein. Pathogenesis of primary chronic venous disease: insights from animal models of venous hypertension. J. Vasc. Surg. 47:183–192, 2008.

    Article  Google Scholar 

  6. Bergan, J. J., G. W. Schmid-Schonbein, P. D. C. Smith, A. N. Nicolaides, M. R. Boisseau, and B. Eklof. Chronic venous disease. N. Engl. J. Med. 355:488–498, 2006.

    Article  Google Scholar 

  7. Bharat, A., M. Jaenicke, and S. Shenoy. A novel technique of vascular anastomosis to prevent juxta-anastomotic stenosis following arteriovenous fistula creation. J. Vasc. Surg. 55:274–280, 2012.

    Article  Google Scholar 

  8. Boon, R. A., T. A. Leyen, R. D. Fontijn, J. O. Fledderus, J. M. C. Baggen, O. L. Volger, et al. KLF2-induced actin shear fibers control both alignment to flow and JNK signaling in vascular endothelium. Blood 115:2533–2542, 2010.

    Article  Google Scholar 

  9. Bozzetto, M., B. Ene-Iordache, A. Remuzzi. Transitional flow in the venous side of patient-specific arteriovenous fistulae for hemodialysis. Ann. Biomed. Eng. 2015.

  10. Bozzetto, M., S. Rota, V. Vigo, F. Casucci, C. Lomonte, W. Morale, et al. Clinical use of computational modeling for surgical planning of arteriovenous fistula for hemodialysis. BMC Med. Inform. Decis. Mak. 17:26, 2017.

    Article  Google Scholar 

  11. Brahmbhatt, A., A. Remuzzi, M. Franzoni, and S. Misra. The molecular mechanisms of hemodialysis vascular access failure. Kidney Int. 89:303–316, 2016.

    Article  Google Scholar 

  12. Browne, L. D., P. Griffin, K. Bashar, S. R. Walsh, E. G. Kavanagh, and M. T. Walsh. In vivo validation of the in silico predicted pressure drop across an arteriovenous fistula. Ann. Biomed. Eng. 43:1275–1286, 2015.

    Article  Google Scholar 

  13. Browne, L. D., M. T. Walsh, and P. Griffin. Experimental and numerical analysis of the bulk flow parameters within an arteriovenous fistula. Cardiovasc. Eng. Technol. 6:450–462, 2015.

    Article  Google Scholar 

  14. Caroli, A., S. Manini, L. Antiga, K. Passera, B. Ene-Iordache, S. Rota, et al. Validation of a patient-specific hemodynamic computational model for surgical planning of vascular access in hemodialysis patients. Kidney Int 84:1237–1245, 2013.

    Article  Google Scholar 

  15. Chemla, E., C. C. Velazquez, F. D’Abate, V. Ramachandran, and G. Maytham. Arteriovenous fistula construction with the VasQ external support device: a pilot study. J. Vasc. Access. 17:243–248, 2016.

    Article  Google Scholar 

  16. Dai, G., M. R. Kaazempur-Mofrad, S. Natarajan, Y. Zhang, S. Vaughn, B. R. Blackman, et al. Distinct endothelial phenotypes evoked by arterial waveforms derived from atherosclerosis-susceptible and -resistant regions of human vasculature. Proc. Natl. Acad. Sci. USA 101:14871–14876, 2004.

    Article  Google Scholar 

  17. Dammers, R., J. H. M. Tordoir, J. P. Kooman, R. J. T. J. Welten, J. M. M. Hameleers, P. J. E. H. M. Kitslaar, et al. The effect of flow changes on the arterial system proximal to an arteriovenous fistula for hemodialysis. Ultrasound Med. Biol. 31:1327–1333, 2005.

    Article  Google Scholar 

  18. Dember, L. M., P. B. Imrey, G. J. Beck, A. K. Cheung, J. Himmelfarb, T. S. Huber, et al. Objectives and design of the hemodialysis fistula maturation study. Am. J. Kidney Dis. 63:104–112, 2014.

    Article  Google Scholar 

  19. Ene-Iordache, B., L. Cattaneo, G. Dubini, and A. Remuzzi. Effect of anastomosis angle on the localization of disturbed flow in “side-to-end” fistulae for haemodialysis access. Nephrol. Dial. Transplant. 28:997–1005, 2013.

    Article  Google Scholar 

  20. Ene-Iordache, B., L. Mosconi, L. Antiga, S. Bruno, A. Anghileri, G. Remuzzi, et al. Radial artery remodeling in response to shear stress increase within arteriovenous fistula for hemodialysis access. Endothel. J. Endothel. Cell Res. 10:95–102, 2003.

    Google Scholar 

  21. Ene-Iordache, B., and A. Remuzzi. Disturbed flow in radial-cephalic arteriovenous fistulae for haemodialysis: low and oscillating shear stress locates the sites of stenosis. Nephrol. Dial. Transplant. 27:358–368, 2012.

    Article  Google Scholar 

  22. Ene-Iordache, B., C. Semperboni, G. Dubini, and A. Remuzzi. Disturbed flow in a patient-specific arteriovenous fistula for hemodialysis: multidirectional and reciprocating near-wall flow patterns. J. Biomech. 48:2195–2200, 2015. doi:10.1016/j.jbiomech.2015.04.013.

    Article  Google Scholar 

  23. Franzoni, M., I. Cattaneo, L. Longaretti, M. Figliuzzi, B. Ene-Iordache, and A. Remuzzi. Endothelial cell activation by hemodynamic shear stress derived from arteriovenous fistula for hemodialysis access. Am. J. Physiol. Heart Circ. Physiol. 310:H49–H59, 2016.

    Article  Google Scholar 

  24. Franzoni, M., I. Cattaneo, B. Ene-Iordache, A. Oldani, P. Righettini, A. Remuzzi. Design of a cone-and-plate device for controlled realistic shear stress stimulation on endothelial cell monolayers. Cytotechnology 2016.

  25. Gimbrone, M. A. J., and G. Garcia-Cardena. Endothelial Cell Dysfunction and the Pathobiology of Atherosclerosis. Circ Res 118:620–636, 2016.

    Article  Google Scholar 

  26. Hahn, C., and M. A. Schwartz. Mechanotransduction in vascular physiology and atherogenesis. Nat. Rev. Mol. Cell Biol. 10:53–62, 2009.

    Article  Google Scholar 

  27. Hayashi, K., and T. Naiki. Adaptation and remodeling of vascular wall; biomechanical response to hypertension. J. Mech. Behav. Biomed. Mater. 2:3–19, 2009.

    Article  Google Scholar 

  28. Huberts, W., A. S. Bode, W. Kroon, R. N. Planken, J. H. M. Tordoir, F. N. van de Vosse, et al. A pulse wave propagation model to support decision-making in vascular access planning in the clinic. Med. Eng. Phys. 34:233–248, 2012.

    Article  Google Scholar 

  29. Koo, A., C. F. J. Dewey, and G. Garcia-Cardena. Hemodynamic shear stress characteristic of atherosclerosis-resistant regions promotes glycocalyx formation in cultured endothelial cells. Am. J. Physiol. Cell Physiol. 304:C137–C146, 2013.

    Article  Google Scholar 

  30. Lee, T., and S. Misra. New insights into dialysis vascular access: molecular targets in arteriovenous fistula and arteriovenous graft failure and their potential to improve vascular access outcomes. CJASN 11:1504–1512, 2016.

    Article  Google Scholar 

  31. Liyanage, T., T. Ninomiya, V. Jha, B. Neal, H. M. Patrice, I. Okpechi, et al. Worldwide access to treatment for end-stage kidney disease: a systematic review. Lancet Lond. Engl. 385:1975–1982, 2015.

    Article  Google Scholar 

  32. Manini, S., L. Antiga, L. Botti, and A. Remuzzi. pyNS: an open-source framework for 0D haemodynamic modelling. Ann. Biomed. Eng. 43:1461–1473, 2015.

    Article  Google Scholar 

  33. Manini, S., K. Passera, W. Huberts, L. Botti, L. Antiga, and A. Remuzzi. Computational model for simulation of vascular adaptation following vascular access surgery in haemodialysis patients. Comput. Methods Biomech. Biomed. Eng. 17:1358–1367, 2014.

    Article  Google Scholar 

  34. National Kideny Foundation K/DOQI clinical practice guidelines for vascular access. Am. J. Kidney Dis. 2006; S176–273.

  35. National Kidney Foundation. K/DOQI Guidelines – Updates 2006, 2014.

  36. Nikam, M., E. S. Chemla, J. Evans, A. Summers, P. Brenchley, A. Tavakoli, et al. Prospective controlled pilot study of arteriovenous fistula placement using the novel Optiflow device. vol. 61, 2015.

    Article  Google Scholar 

  37. Noris, M., M. Morigi, R. Donadelli, S. Aiello, M. Foppolo, M. Todeschini, et al. Nitric oxide synthesis by cultured endothelial cells is modulated by flow conditions. Circ. Res. 76:536–543, 1995.

    Article  Google Scholar 

  38. Novodvorsky, P., and T. J. A. Chico. The role of the transcription factor KLF2 in vascular development and disease. Prog. Mol. Biol. Transl. Sci. 124:155–188, 2014.

    Article  Google Scholar 

  39. Ochsner, A. J., R. J. Colp, and G. E. Burch. Normal blood pressure in the superficial venous system of man at rest in the supine position. Circulation 3:674–680, 1951.

    Article  Google Scholar 

  40. Papaioannou, T. G., and C. Stefanadis. Vascular wall shear stress: basic principles and methods. Hell. J. Cardiol. 46:9–15, 2005.

    Google Scholar 

  41. Passera, K., S. Manini, L. Antiga, and A. Remuzzi. Patient-specific model of arterial circulation for surgical planning of vascular access. J. Vasc. Access. 14:180–192, 2013.

    Article  Google Scholar 

  42. Pries, A. R., and T. W. Secomb. Control of blood vessel structure: insights from theoretical models. Am. J. Physiol. Heart Circ. Physiol. 288:H1010–H1015, 2005.

    Article  Google Scholar 

  43. Remuzzi, A., C. F. J. Dewey, P. F. Davies, and M. A. J. Gimbrone. Orientation of endothelial cells in shear fields in vitro. Biorheology 21:617–630, 1984.

    Article  Google Scholar 

  44. Robbin, M. L., N. E. Chamberlain, M. E. Lockhart, M. H. Gallichio, C. J. Young, M. H. Deierhoi, et al. Hemodialysis arteriovenous fistula maturity: US evaluation. Radiology 225:59–64, 2002.

    Article  Google Scholar 

  45. Roy-Chaudhury, P., L. Arend, J. Zhang, M. Krishnamoorthy, Y. Wang, R. Banerjee, et al. Neointimal hyperplasia in early arteriovenous fistula failure. Am. J. Kidney Dis. Off. J. Natl. Kidney Found. 50:782–790, 2007.

    Article  Google Scholar 

  46. Roy-Chaudhury, P., Y. Wang, M. Krishnamoorthy, J. Zhang, R. Banerjee, R. Munda, et al. Cellular phenotypes in human stenotic lesions from haemodialysis vascular access. Nephrol. Dial. Transplant. 24:2786–2791, 2009.

    Article  Google Scholar 

  47. Singh, P., M. L. Robbin, M. E. Lockhart, and M. Allon. Clinically immature arteriovenous hemodialysis fistulas: effect of US on salvage. Radiology 246:299–305, 2008.

    Article  Google Scholar 

  48. Srivastava, A., V. Mittal, H. Lal, T. Javali, N. Patidar, S. Sureka, et al. Spiral laminar flow, the earliest predictor for maturation of arteriovenous fistula for hemodialysis access. Indian J. Urol. 31:240–244, 2015.

    Article  Google Scholar 

  49. Tsamis, A., N. Stergiopulos, and A. Rachev. A structure-based model of arterial remodeling in response to sustained hypertension. J. Biomech. Eng. 131:101004, 2009.

    Article  Google Scholar 

  50. Van Canneyt, K., T. Pourchez, S. Eloot, C. Guillame, A. Bonnet, P. Segers, et al. Hemodynamic impact of anastomosis size and angle in side-to-end arteriovenous fistulae: a computer analysis. J. Vasc. Access. 11:52–58, 2010.

    Article  Google Scholar 

  51. Yamamoto, K., C. D. Protack, G. Kuwahara, M. Tsuneki, T. Hashimoto, M. R. Hall, et al. Disturbed shear stress reduces Klf2 expression in arterial-venous fistulae in vivo. Physiol. Rep. 2015;3:e12348.

    Article  Google Scholar 

Download references

Conflict of Interest

AR and MB declare that that they have no conflict of interests regarding this contribution.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Remuzzi.

Additional information

Associate Editors James E. Moore, Jr. and Ajit P. Yoganathan oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Remuzzi, A., Bozzetto, M. Biological and Physical Factors Involved in the Maturation of Arteriovenous Fistula for Hemodialysis. Cardiovasc Eng Tech 8, 273–279 (2017). https://doi.org/10.1007/s13239-017-0323-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-017-0323-0

Keywords

Navigation