Skip to main content
Log in

Review of Experimental Modelling in Vascular Access for Hemodialysis

  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

This paper reviews applications of experimental modelling in vascular access for hemodialysis. Different techniques that are used in in-vitro experiments are bulk pressure and flow rate measurements, Laser Doppler Velocimetry and Vector Doppler Ultrasound point velocity measurements, and whole-field measurements such as Particle Image Velocimetry, Ultrasound Imaging Velocimetry, Colour Doppler Ultrasound, and Planar Laser Induced Fluorescence. Of these methods, the ultrasound techniques can also be used in-vivo, to provide realistic boundary conditions to in-vitro experiments or numerical simulations. In the reviewed work, experimental modelling is mainly used to support computational models, but also in some cases as a tool on its own. It is concluded that, to further advance the utility of computational modelling in vascular access research, a rigorous verification and validation procedure should be adopted. Experimental modelling can play an important role in both in-vitro validation, and the quantification of the accuracy, uncertainty, and reproducibility of in-vivo measurement methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Adrian, R.J., and J. Westerweel. Particle Image Velocimetry, Cambridge Aerospace Series, vol. 30. Cambridge University Press, Cambridge 2011.

  2. Barber, T., D. Fulker, N. M. Lwin, and A. Simmons. Using fluid dynamics to improve vascular access in haemodialysis. Renal Soc. Australa. J. 11(1):32–34, 2014.

    Google Scholar 

  3. Barbour, M.C., P. M. McGah, C. H. Ng, A. Clark, K. W. Gow, and A. Aliseda. Convective leakage makes heparin locking of central venous catheters ineffective within seconds: experimental measurements in a model superior vena cava. ASAIO J. 61(6):701–709, 2015.

    Article  Google Scholar 

  4. Botti, L., K. Van Canneyt, R. Kaminsky, T. Claessens, R. N. Planken, P. Verdonck, A. Remuzzi, and L. Antiga. Numerical evaluation and experimental validation of pressure drops across a patient-specific model of vascular access for hemodialysis. Cardiovasc. Eng. Technol. 4(4):485–499, 2013.

    Article  Google Scholar 

  5. Browne, L.D., K. Bashar, P. Griffin, E. G. Kavanagh, S. R. Walsh, and M.T. Walsh. The role of shear stress in arteriovenous fistula maturation and failure: a systematic review. PloS ONE 2015. doi:10.1371/journal.pone.0145795.

    Article  Google Scholar 

  6. Browne, L.D., M.T. Walsh, and P. Griffin. Experimental and numerical analysis of the bulk flow parameters within an arteriovenous fistula. Cardiovasc. Eng. Technol. 6(4):450–462, 2015.

    Article  Google Scholar 

  7. Buckingham, E. On physically similar systems illustrations of the use of dimensional equations Phys. Rev. (4):345–376, (1914).

    Article  Google Scholar 

  8. Bushberg, J. T., J. A. Seibert Jr., E. M. Leidholdt, and J. M., Boone. The Essential Physics of Medical Imaging. Wolters Kluwer Health, Lippincott Williams & Wilkins, Philadelphia 2012

  9. Caroli, A., S. Manini, L. Antiga, K. Passera, B. Ene-Iordache, S. Rota, G. Remuzzi, A. Bode, J. Leermakers, F. N. van de Vosse, R. Vanholder, M. Malovrh, J. Tordoir, and A. Remuzzi. Validation of a patient-specific hemodynamic computational model for surgical planning of vascular access in hemodialysis patients. Kidney Int. 84:1237–1245, 2013.

    Article  Google Scholar 

  10. Chen, W.L., C. D. Kan, and R.H. Kao. Numerical evaluation and experimental validation of vascular access stenosis estimation. Technol. Healthc. 24(s1):S245–S252, 2015.

    Google Scholar 

  11. Chen, W.L., Y.H. Lin, C.D. Kan, F.M. Yu, and C.H. Lin. Assessment of flow instabilities in in-vitro stenotic arteriovenous grafts using an equivalent astable multivibrator. IET Sci. Meas. Technol. 9(6):709–716, 2015.

    Article  Google Scholar 

  12. Decorato, I., Z. Kharboutly, T. Vassallo, J. Penrose, C. Legallais, A.V. Salsac. Numerical simulation of the fluid structure interactions in a compliant patient-specific arteriovenous fistula. Int. J. Comput. Methods Biomed. Eng. 30:143–159, 2014.

    Google Scholar 

  13. Dixon, B.S. Why don’t fistulas mature? Kidney Int. 70:1413–1422, 2006.

    Article  Google Scholar 

  14. Dunmire, B., K. W. Beach, K. H. Labs, M. Plett Jr., and D. E. Strandness. Cross-beam vector Doppler ultrasound for angle-independent velocity measurements. Ultrasound Med. Biol. 26(8):1213–1235, 2000.

    Article  Google Scholar 

  15. Heise, M., S. Schmidt, U. Krüger, R. Pfitzmann, H. Scholz, P. Neuhaus, and U. Settmacher. Local haemodynamics and shear stress in cuffed and straight PTFE-venous anastomoses: an in-vitro comparison using Particle Image Velocimetry. Eur. J. Vasc. Endovasc. Surg. 26:367–373, 2003.

    Article  Google Scholar 

  16. Horowitz, S., T. Chen, V. Chandrasekaran, K. Tedjojuwono, T. Nishida, L. Cattafesta, and M. Sheplak. A micromachined geometric Moiré interferometric floating-element shear stress sensor. In: 42nd AIAA Aerospace Sciences Meeting and Exhibit 2004.

  17. Huberts, W., A. Bode, W. Kroon, R. Planken, J. Tordoir, F. van de Vosse, and E. Bosboom. A pulse wave propagation model to support decision-making in vascular access planning in the clinic. Med. Eng. Phys. 34(2):233–248, 2011.

    Article  Google Scholar 

  18. Huberts, W., K. Van Canneyt, P. Segers, S. Eloot, J. Tordoir, P. Verdonck, F. van de Vosse, and E. Bosboom. Experimental validation of a pulse wave propagation model for predicting hemodynamics after vascular access surgery. J. Biomech. 45:1684–1691, 2012.

    Article  Google Scholar 

  19. Kharboutly, Z., V. Deplano, E. Bertrand, and C. Legallais. Numerical and experimental study of blood flow through a patient-specific arteriovenous fistula used for hemodialysis. Med. Eng. Phys. 32:111–118, 2010.

    Article  Google Scholar 

  20. Kim, H.B., J. R. Hertzberg, and R.Shandas. Development and validation of echo-PIV. Exp. Fluids 36:455–462, 2004.

    Article  Google Scholar 

  21. Kokkalis, E., A. N. Cookson, P.A. Stonebridge, G. A. Corner, J. G. Houston, and P. R. Hoskins. Comparison of vortical structures induced by arteriovenous grafts using vector Doppler ultrasound. Ultrasound Med. Biol. 41(3):760–774, 2015.

    Article  Google Scholar 

  22. Kokkalis, E., P. R. Hoskins, G. A. Corner, P. A. Stonebridge, A. J. Doull, and J. G. Houston. Secondary flow in peripheral vascular prosthetic grafts using vector Doppler imaging. Ultrasound Med. Biol. 39(12):2295–2307, 2013.

    Article  Google Scholar 

  23. Ku, D. N. Blood flow in arteries. Annu. Rev. Fluid Mech. 29:399–434, 1997.

    Article  MathSciNet  Google Scholar 

  24. Kumar, L., V. Mehandia, and S. Narayanan. Modeling laminar pulsatile flow for superior cleaning of fouling layers Ind. Eng. Chem. Res. 54(43):10893–10900, 2015

    Article  Google Scholar 

  25. Leow, C.H., E. Bazigou, R. J. Eckersley, A. C. H. Yu, P. D. Weinberg, M. X. Tang. Flow velocity mapping using contrast enhanced high-frame-rate plane wave ultrasound and image tracking: methods and initial in vitro and in vivo evaluation. Ultrasound Med. Biol. 41(11):2913–2925, 2015.

    Article  Google Scholar 

  26. Lin, C.H., C. D. Dann, W. L. Chen, M. J. Wu, F. M. Yu. An equivalent astable multivibrator model to assess flow instability and dysfunction risk in in-vitro stenotic arteriovenous grafts. Technol. Health Care 24(3):295–308, 2016.

    Article  Google Scholar 

  27. Lwin, N., M. Wahab, J. Carroll, and T. Barber. Experimental and computational analysis of a typical Arterio-Venous Fistula. In: 19th Australasian Fluid Mechanics Conference (December, 2014)

  28. Mareels, G., R. Kaminsky, S. Eloot, P. R. Verdonck. Particle Image Velocimetryvalidated, computational fluid dynamicsbased design to reduce shear stress and residence time in central venous hemodialysis catheters. ASAIO J. 53:438446, 2007.

    Article  Google Scholar 

  29. Markl, M., A. Frydrychowicz, S. Kozerke, M. Hope, and O. Wieben. 4d flow MRI. Journal of Magnetic Resonance Imaging 36:1015–1036, 2012.

    Article  Google Scholar 

  30. Oberkampf, W. L., and T. G. Trucano. Verification and validation in computational fluid dynamics. Progress in Aerospace Sciences 38:209–272, 2002.

    Article  Google Scholar 

  31. Poelma, C., R. van der Mijle, J. Mari, M. X. Tang, P. Weinberg, and J. Westerweel. Ultrasound imaging velocimetry: Toward reliable wall shear stress measurements. Eur. J. Mech. B/Fluids 35:70–75, 2012.

    Article  Google Scholar 

  32. Reynolds, O. An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels. Philos. Trans. R. Soc. 174:935–982, 1883.

    Article  Google Scholar 

  33. Rothuizen, T. C., C. Y. Wong, P. H. A. Quax, A. J. van Zonneveld, T. J. Rabelink, and J. I. Rotmans. Arteriovenous access failure: more than just intimal hyperplasia? Nephrol. Dial. Transplant. 28:1085–1092, 2013.

    Article  Google Scholar 

  34. Roy, C. J., and W. L. Oberkampf. A comprehensive framework for verification, validation, and uncertainty quantification in scientific computing. Comput. Methods Appl. Mech. Eng. 200: 2131–2144, 2011.

    Article  MathSciNet  Google Scholar 

  35. Sivanesan, S., T. How, R. Black, and A. Bakran. Flow patterns in the radiocephalic arteriovenous fisstula: an in vitro study. J. Biomech. 32:915–925, 1999.

    Article  Google Scholar 

  36. Tropea, C., A. Yarin, and J. F. Foss (eds.): Springer Handbook of Experimental Fluid Mechanics. Springer, New York (2007)

  37. Van Canneyt, K., R. N. Planken, S. Eloot, P. Segers, P. Verdonck. Experimental study of a new method for early detection of vascular access stenoses: pulse pressure analysis at hemodialysis needle. Artif. Org. 34(2):113–117, 2010.

    Article  Google Scholar 

  38. Van Tricht, I. Hemodynamics of vascular access for hemodialysis. Ph.D. thesis, Universiteit Gent 2005.

  39. Van Tricht, I., D. De Wachter, J. Tordoir, and P. Verdonck. Hemodynamics in a compliant hydraulic in vitro model of straight versus tapered PTFE Arteriovenous Graft. J. Surg. Res. 116:297–304, 2004.

    Article  Google Scholar 

  40. European commission: Community research and development information service. http://cordis.europa.eu/project/rcn/86679_en.html (2016). Accessed June, 2016

  41. Homepage: Redva. http://www.redva.eu (2016). Accessed June, 2016

  42. Womersley, J. R. Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known. J. Physiol. 127(3):553–563,1955.

    Article  Google Scholar 

Download references

Conflict of interest

S. Drost, N. Alam, J. G. Houston and D. Newport declares that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Funding

This project has received funding from the European Unions Seventh Framework Programme for research, technological development and demonstration under Grant Agreement No. 324487.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Newport.

Additional information

Associate Editors James E Moore Jr. and Michael Walsh oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drost, S., Alam, N., Houston, J.G. et al. Review of Experimental Modelling in Vascular Access for Hemodialysis. Cardiovasc Eng Tech 8, 330–341 (2017). https://doi.org/10.1007/s13239-017-0311-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-017-0311-4

Keywords

Navigation