Skip to main content

Advertisement

Log in

Superflexible/superhydrophilic PVDF-HFP/CuO-nanosheet nanofibrous membrane for efficient microfiltration

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

Membrane fouling and poor flexibility plague membrane technology for further application in water treatment. Herein, we introduce a hierarchical superflexible/superhydrophilic poly (vinylidene fluoride-co-hexa-fluoropropylene) (PVDF-HFP)/CuO-nanosheet membrane, which is capable of separating Polystyrene (PS) microspheres (diameter large than 300 nm) with high separation efficiency (higher than 99.89%). Moreover, the resulting membrane maintained 98.10% water flux after 60 min, suggesting excellent anti-fouling property. The anti-fouling property is contributed by the membrane superhydrophilicity, a result of the extreme roughness of CuO-nanosheet and the hydrophilic nature of CuO. Furthermore, the membrane processes outstanding flexibility due to the PVDF-HFP nanofiber backbone, which widens its applicability in practical industrial employment. Therefore, such a membrane with anti-fouling, high separation efficiency, super flexibility, as well as acceptable water flux (2360 ± 50 Lm− 2h− 1, 0.3 bar) and good mechanical properties (stress at break 6.65 MPa and elongation at break 67.35%), makes the membrane a good candidate for practical water microfiltration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Ahmed FE, Lalia BS, Hashaikeh R (2015) A review on electrospinning for membrane fabrication: challenges and applications. Desalination 356:15–30

    CAS  Google Scholar 

  • Ayadi S, Jedidi I, Lacour S, Cerneaux S, Cretin M, Amar RB (2016) Preparation and characterization of carbon microfiltration membrane applied to the treatment of textile industry effluents. Sep Sci Technol 51:1022–1029

    CAS  Google Scholar 

  • Bae J, Baek I, Choi H (2016) Mechanically enhanced PES electrospun nanofiber membranes (ENMs) for microfiltration: The effects of ENM properties on membrane performance. Water Res 105:406–412

    CAS  Google Scholar 

  • Blanco E, Shen H, Ferrari M (2015) Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat biotechnol 33:941

    CAS  Google Scholar 

  • Bukhari SZA, Ha JH, Lee J, Song IH (2018) Oxidation-bonded SiC membrane for microfiltration. J Eur Ceram Soc 38:1711–1719

    CAS  Google Scholar 

  • Chen A, Long H, Li X, Li Y, Yang G, Lu P (2009) Controlled growth and characteristics of single-phase Cu2O and CuO films by pulsed laser deposition. Vacuum 83:927–930

    CAS  Google Scholar 

  • Das B, Chakrabarty B, Barkakati P (2016) Preparation and characterization of novel ceramic membranes for micro-filtration applications. Ceram Int 42:14326–14333

    CAS  Google Scholar 

  • Fan Y, He Y, Luo P, Chen X, Yu Z, Li M (2017) Facile way in building superhydrophobic zirconium surface for controllable water-oil separation. Mater Lett 188:115–118

    CAS  Google Scholar 

  • Feng Q, Wu D, Zhao Y, Wei A, Wei Q, Fong H (2018a) Electrospun AOPAN/RC blend nanofiber membrane for efficient removal of heavy metal ions from water. J Hazard Mater 344819–828

  • Feng S, Zhong Z, Wang Y, Xing W, Drioli E (2018b) Progress and perspectives in PTFE membrane: Preparation, modification, and applications. J Membrane Sci 549:332–349

    CAS  Google Scholar 

  • Goetz LA, Jalvo BR, Rosal R, Mathew AP (2016) Superhydrophilic anti-fouling electrospun cellulose acetate membranes coated with chitin nanocrystals for water filtration. J Membrane Sci 510:238–248

    CAS  Google Scholar 

  • Guo H, Deng Y, Tao Z, Yao Z, Wang J, Lin C, Tang CY (2016) Does hydrophilic polydopamine coating enhance membrane rejection of hydrophobic endocrine-disrupting compounds. Environ Sci Tech Let 3:332–338

    CAS  Google Scholar 

  • Islam MS, McCutcheon JR, Rahaman MS (2017) A high flux polyvinyl acetate-coated electrospun nylon 6/SiO2 composite microfiltration membrane for the separation of oil-in-water emulsion with improved antifouling performance. J Membrane Sci 537:297–309

    CAS  Google Scholar 

  • Jin X, Chen X, Cheng Y, Wang L, Hu B, Tan J (2015) Effects of hydrothermal temperature and time on hydrothermal synthesis of colloidal hydroxyapatite nanorods in the presence of sodium citrate. J Colloid Interf Sci 450:151–158

    CAS  Google Scholar 

  • Karimi E, Raisi A, Aroujalian A (2016) TiO2-induced photo-cross-linked electrospun polyvinyl alcohol nanofibers microfiltration membranes. Polymer 99:642–653

    CAS  Google Scholar 

  • Lee MW, An S, Jo HS, Yoon SS, Yarin AL (2015) Self-healing nanofiber-reinforced polymer composites. 1. Tensile testing and recovery of mechanical properties. ACS Appl Mater Inter 7:19546–19554

    CAS  Google Scholar 

  • Liang X, Zhang X, Liu W, Tang D, Zhang B, Ji G (2016) A simple hydrothermal process to grow MoS2 nanosheets with excellent dielectric loss and microwave absorption performance. J Mater Chem C 4:6816–6821

    CAS  Google Scholar 

  • Liu H, Liu W, Luo B, Wen W, Liu M, Wang X, Zhou C (2016) Electrospun composite nanofiber membrane of poly (l-lactide) and surface grafted chitin whiskers: fabrication, mechanical properties and cytocompatibility. Carbohyd Polym 147:216–225

    CAS  Google Scholar 

  • Liu Z, Ang KKJ, He J (2017) Needle-disk electrospinning inspired by natural point discharge. J Mater Sci 52:1823–1830

    CAS  Google Scholar 

  • Meghana S, Kabra P, Chakraborty S, Padmavathy N (2015) Understanding the pathway of antibacterial activity of copper oxide nanoparticles. RSC adv 5:12293–12299

    CAS  Google Scholar 

  • Minbu H, Ochiai A, Kawase T, Taniguchi M, Lloyd DR, Tanaka T (2015) Preparation of poly (l-lactic acid) microfiltration membranes by a nonsolvent-induced phase separation method with the aid of surfactants. J Membrane Sci 479:85–94

    CAS  Google Scholar 

  • Nazri NAM, Lau WJ, Ismail AF, Matsuura T, Veerasamy D, Hilal N (2015) Performance of PAN-based membranes with graft copolymers bearing hydrophilic PVA and PAN segments in direct ultrafiltration of natural rubber effluent. Desalination 358:49–60

    CAS  Google Scholar 

  • Nikooe N, Saljoughi E (2017) Preparation and characterization of novel PVDF nanofiltration membranes with hydrophilic property for filtration of dye aqueous solution. Appl Surf Sci 413:41–49

    CAS  Google Scholar 

  • Shang Y, Si Y, Raza A, Yang L, Mao X, Ding B, Yu J (2012) An in situ polymerization approach for the synthesis of superhydrophobic and superoleophilic nanofibrous membranes for oil-water separation. Nanoscale 4:7847–7854

    CAS  Google Scholar 

  • Song W, Li Z, Li Y, You H, Qi P, Liu F, Loy DA (2018) Facile sol-gel coating process for anti-biofouling modification of poly (vinylidene fluoride) microfiltration membrane based on novel zwitterionic organosilica. J Membr Sci 550266–277

  • Sun XF, Qin J, Xia PF, Guo BB, Yang CM, Song C, Wang SG (2015) Graphene oxide-silver nanoparticle membrane for biofouling control and water purification. Chem Eng J 281:53–59

    CAS  Google Scholar 

  • Wang T, Lv R, Zhang P, Li C, Gong J (2015a) Au nanoparticle sensitized ZnO nanopencil arrays for photoelectrochemical water splitting. Nanoscale 7:77–81

    CAS  Google Scholar 

  • Wang Z, Jiang X, Cheng X, Lau CH, Shao L (2015b) Mussel-inspired hybrid coatings that transform membrane hydrophobicity into high hydrophilicity and underwater superoleophobicity for oil-in-water emulsion separation. ACS Appl Mater Inter 7:9534–9545

    CAS  Google Scholar 

  • Wang Z, Crandall C, Sahadevan R, Menkhaus TJ, Fong H (2017) Microfiltration performance of electrospun nanofiber membranes with varied fiber diameters and different membrane porosities and thicknesses. Polymer 114:64–72

    CAS  Google Scholar 

  • Wang Y, Chao G, Li X, Dong F, Zhuang X, Shi L, Xu X (2018a) Hierarchical fibrous microfiltration membranes by self-assembling DBS nanofibrils in solution-blown nanofibers. Soft Matter 14:8879–8882

    CAS  Google Scholar 

  • Wang B, Zhang Z, Chang K, Cui J, Rosenkranz A, Yu J, Lin C, Chen G, Zhang K, Luo J, Jiang N, Guo D (2018b) New deformation-induced nanostructure in silicon. Nano lette 18:4611–4617

    CAS  Google Scholar 

  • Wenzel RN (1936) Resistance of solid surfaces to wetting by water. Ind Eng Chem Res 28:988–994

    CAS  Google Scholar 

  • Woo SH, Lee JS, Lee HH, Park J, Min BR (2015) Preparation method of crack-free PVDF microfiltration membrane with enhanced antifouling characteristics. ACS Appl Mater Inter 7:716466–16477

    Google Scholar 

  • Yuan H, He Z (2015) Integrating membrane filtration into bioelectrochemical systems as next generation energy-efficient wastewater treatment technologies for water reclamation: a review. BioresourTechnol 195:202–209

    CAS  Google Scholar 

  • Zhang Z, Song Y, Xu C, Guo D (2012a) A novel model for undeformed nanometer chips of soft-brittle HgCdTe films induced by ultrafine diamond grits. Scripta Mater 67:197–200

    CAS  Google Scholar 

  • Zhang Z, Huo F, Zhang X, Guo D (2012b) Fabrication and size prediction of crystalline nanoparticles of silicon induced by nanogrinding with ultrafine diamond grits. Scripta Mater 67:657–660

    CAS  Google Scholar 

  • Zhang Z, Song Y, Huo F, Guo D (2012c) Nanoscale material removal mechanism of soft-brittle HgCdTe single crystals under nanogrinding by ultrafine diamond grits. Tribol Lett 46:95–100

    Google Scholar 

  • Zhang Z, Huo Y, Guo D (2013a) A model for nanogrinding based on direct evidence of ground chips of silicon wafers. Sci China Technol Sci 56:2099–2108

    CAS  Google Scholar 

  • Zhang Z, Zhang X, Xu C, Guo D (2013b) Characterization of nanoscale chips and a novel model for face nanogrinding on soft-brittle HgCdTe films. Tribol Lett 49:203–215

    CAS  Google Scholar 

  • Zhang Z, Wang B, Kang R, Zhang B, Guo D (2015) Changes in surface layer of silicon wafers from diamond scratching. Cirp Ann 64:349–352

    Google Scholar 

  • Zhang Z, Wang B, Huang S, Wen B, Yang S, Zhang B, Lin C, Guo D (2016a) A novel approach to fabricating a nanotwinned surface on a ternary nickel alloy. Mater Design 106:313–320

    CAS  Google Scholar 

  • Zhang Z, Wang B, Zhou P, Kang R, Zhang B, Guo D (2016b) A novel approach of chemical mechanical polishing for cadmium zinc telluride wafers. Sci Rep 6:26891

    CAS  Google Scholar 

  • Zhang Z, Wang B, Zhou P, Guo D, Kang R, Zhang B (2016c) A novel approach of chemical mechanical polishing using environment-friendly slurry for mercury cadmium telluride semiconductors. Sci Rep 6:22466

    CAS  Google Scholar 

  • Zhang R, Liu Y, He M, Su Y, Zhao X, Elimelech M, Jiang Z (2016d) Antifouling membranes for sustainable water purification: strategies and mechanisms. Chem Soc Rev 45:5888–5924

    CAS  Google Scholar 

  • Zhang Z, Huang S, Chen L, Wang B, Wen B, Zhang B, Guo D (2017a) Ultrahigh hardness on a face-centered cubic metal. Appl Surf Sci 416:891–900

    CAS  Google Scholar 

  • Zhang Z, Cui J, Wang B, Wang Z, Kang R, Guo D (2017b) A novel approach of mechanical chemical grinding. J Alloy Compd 726:514–524

    CAS  Google Scholar 

  • Zhang Z, Shi Z, Du Y, Yu Z, Guo L, Guo D (2018a) A novel approach of chemical mechanical polishing for a titanium alloy using an environment-friendly slurry. Appl Surf Sci 427:409–415

    CAS  Google Scholar 

  • Zhang Z, Cui J, Zhang J, Liu D, Yu Z, Guo D (2019) Environment friendly chemical mechanical polishing of copper. Appl Surf Sci 467:5–11

    Google Scholar 

  • Zhao Y, Zhang Z, Dai L, Zhang S (2017) Preparation of high water flux and antifouling RO membranes using a novel diacyl chloride monomer with a phosphonate group. J Membr Sci 536:98–107

    CAS  Google Scholar 

  • Zhu J, Li D, Chen H, Yang X, Lu L, Wang X (2004) Highly dispersed CuO nanoparticles prepared by a novel quick-precipitation method. Mater Lett 58:3324–3327

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the support by Pre-research Project of China National Natural Science Foundation of Anhui Polytechnic University (2019yyzr06), Key Project of Natural Science Research in Colleges and Universities of Anhui Province (KJ2015A022), and Anhui Provincial Natural Science Foundation (1908085QE223).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhi Liu or Jianghui Zhao.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MP4 22012 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Cao, R., Wei, A. et al. Superflexible/superhydrophilic PVDF-HFP/CuO-nanosheet nanofibrous membrane for efficient microfiltration. Appl Nanosci 9, 1991–2000 (2019). https://doi.org/10.1007/s13204-019-01014-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-019-01014-4

Keywords

Navigation