Skip to main content

Advertisement

Log in

Antibacterial activity and mode of action of totarol against Staphylococcus aureus in carrot juice

  • Original Article
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

Food contaminated with pathogenic bacteria such as Staphylococcus aureus (S. aureus), represents a serious health risk to human beings. Totarol is an antibacterial novel phenolic diterpenes. In present study, the antibacterial activity of totarol against S. aureus was investigated in a food system. The antibacterial activity of totarol was determined by measuring the zones of inhibition and minimum inhibitory concentrations (MICs). The MICs for S. aureus strains were in the range of 2–4 μg/ml. The probable antibacterial mechanism of totarol was the alteration in cell membranes integrity and permeability, which leading to the leakage of cellular materials. The electric conductivity showed a time- and dose-dependent increasing manner, and we utilized totarol to induce the production of cytoplasmic β-galactosidase in S. aureus. Scanning electron microscopy and transmission electron microscopy analysis further confirmed that S. aureus cell membranes were damaged by totarol. The time-kill assay and detection of the kinetics of S. aureus deactivation in situ indicated that totarol has good preservative activities in a food model. Totarol successfully inhibited S. aureus development in carrot juice, at room temperature (25 °C) and in refrigerator (4 °C) respectively. Our works provided not only additional evidences in support of totarol being regarded as a natural antibacterial food preservative but also fundamental understanding on the mode of antibacterial action. It is necessary to consider that totarol will become a promising antibacterial additive for food preservative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ananda BS, Kazmer GW, Hinckley L, Andrew SM, Venkitanarayanan K (2009) Antibacterial effect of plant-derived antimicrobials on major bacterial mastitis pathogens in vitro. J Dairy Sci 92:1423–1429

    Article  Google Scholar 

  • Bajpai VK, Al-Reza SM, Choi UK, Lee JH, Kang SC (2009) Chemical composition, antibacterial and antioxidant activities of leaf essential oil and extracts of Metasequioa glyptostroboides Miki ex Hu. Food Chem Toxicol 47:1876–1883

    Article  CAS  Google Scholar 

  • Bajpai VK, Sharma A, Baek KH (2013) Antibacterial mode of action of Cudrania tricuspidata fruit essential oil, affecting membrane permeability and surface characteristics of food-borne pathogens. Food Control 32:582–590

    Article  CAS  Google Scholar 

  • Balaban N, Rasooly A (2000) Staphylococcal enterotoxins. Int J Food Microbiol 61:1–10

    Article  CAS  Google Scholar 

  • Carson CF, Mee BJ, Riley TV (2002) Mechanism of action of Melaleuca alternifolia (tea tree) oil on Staphylococcus aureus determined by time-kill, lysis, leakage, and salt tolerance assays and electron microscopy. Antimicrob Agents Chemother 46:1914–1920

    Article  CAS  Google Scholar 

  • Cheah SE, Li J, Nation RL, Bulitta JB (2015) Novel rate-area-shape modeling approach to quantify bacterial killing and regrowth for in vitro static time-kill studies. Antimicrob Agents Chemother 59:381–388

    Article  Google Scholar 

  • Chen CZ, Cooper SL (2002) Interactions between dendrimer biocides and bacterial membranes. Biomaterials 23:3359–3368

    Article  CAS  Google Scholar 

  • Clinical and Laboratory Standards Institute (CLSI) (2009) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, 8th edn. CLSI, Wayne, PA, USA Approved Standard M7-A8

  • Constantine GH, Karchesy JJ, Franzblau SG, LaFleur LE (2001) (+)-Totarol from Chamaecyparis nootkatensis and activity against Mycobacterium tuberculosis. Fitoterapia 72:572–574

    Article  CAS  Google Scholar 

  • Cox SD, Mann CM, Markham JL, Gustafson JE, Warmington JR, Wyllie SG (2001) Determining the antimicrobial actions of tea tree oil. Molecules 6:87–91

    Article  CAS  Google Scholar 

  • Creaser E (1955) The induced (adaptive) biosynthesis of β-galactosidase in Staphylococcus aureus. J Gen Microbiol 12:288–297

    Article  CAS  Google Scholar 

  • Falla TJ, Karunaratne DN, Hancock REW (1996) Mode of action of the antimicrobial peptide indolicidin. J Biol Chem 271:19298–19303

    Article  CAS  Google Scholar 

  • Fleming-Jones ME, Smith RE (2003) Volatile organic compounds in foods: a five year study. J Agric Food Chem 51:8120–8127

    Article  CAS  Google Scholar 

  • Gao Y, Xu X, Chang S, Wang Y, Xu Y, Ran S et al (2015) Totarol prevents neuronal injury in vitro and ameliorates brain ischemic stroke: potential roles of Akt activation and HO-1 induction. Toxicol Appl Pharmacol 289:142–154

    Article  CAS  Google Scholar 

  • Gordien AY, Gray A, Franzblau SG, Seidel V (2009) Antimycobacterial terpenoids from Juniperus communis L. (Cuppressaceae). J Ethnopharmacol 126:500–505

    Article  CAS  Google Scholar 

  • Helander IM, Nurmiaho-Lassila EL, Ahvenainen R, Rhoades J, Roller S (2001) Chitosan disrupts the barrier properties of the outer membrane of gramnegative bacteria. Int J Food Microbiol 71:235–244

    Article  CAS  Google Scholar 

  • Ibrahim HR, Sugimoto Y, Aoki T (2000) Ovotransferrin antimicrobial peptide (OTAT-92) kills bacteria through a membrane damage mechanism. Biochim Biophys Acta 1523:196–205

    Article  CAS  Google Scholar 

  • Jaiswal R, Beuria TK, Mohan R, Mahajan SK, Panda D (2007) Totarol inhibits bacterial cytokinesis by perturbing the assembly dynamics of FtsZ. Biochemistry 46:4211–4220

    Article  CAS  Google Scholar 

  • Je JY, Kim SK (2006) Chitosan derivatives killed bacteria by disrupting the outer and inner membrane. J Agric Food Chem 54:6629–6633

    Article  CAS  Google Scholar 

  • Kim MB, Shaw JT (2010) Synthesis of antimicrobial natural products targeting FtsZ: (+)-totarol and related totarane diterpenes. Org Lett 12:3324–3327

    Article  CAS  Google Scholar 

  • Krishnamoorthy K, Moon JY, Hyun HB, Cho SK, Kim SJ (2012) Mechanistic investigation on the toxicity of MgO nanoparticles toward cancer cells. J Mater Chem 22:24610–24617

    Article  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the bacteriophage T4. Nature 227:680–685

    Article  CAS  Google Scholar 

  • LaPlante KL (2007) In vitro activity of lysostaphin, mupirocin, and tea tree oil against clinical methicillin-resistant Staphylococcus aureus. Diagn Microbiol Infect Dis 57:413–418

    Article  CAS  Google Scholar 

  • Lee HJ, Choi GJ, Cho KY (1998) Correlation of lipid peroxidation in Botrytis cinerea caused by dicarboximide fungicides with their fungicidal activity. J Agric Food Chem 46:737–741

    Article  CAS  Google Scholar 

  • Li Y, Xiang Q, Zhang Q, Huang Y, Su Z (2012) Overview on the recent study of antimicrobial peptides: origins, functions, relative mechanisms and application. Peptides 37:207–215

    Article  CAS  Google Scholar 

  • Loir YL, Baron F, Gautier M (2003) Staphylococcus aureus and food poisoning. Genet Mol Res 2:63–76

    Google Scholar 

  • Lv F, Liang H, Yuan Q, Li C (2011) In vitro antimicrobial effects and mechanism of action of selected plant essential oil combinations against four food-related microorganisms. Food Res Int 44:3057–3064

    Article  CAS  Google Scholar 

  • Miao J, Zhou J, Liu G, Chen F, Chen Y, Gao X et al (2016) Membrane disruption and DNA binding of Staphylococcus aureus cell induced by a novel antimicrobial peptide produced by Lactobacillus paracasei subsp. tolerans FX-6. Food Control 59:609–613

    Article  CAS  Google Scholar 

  • Muroi H, Kubo I (1996) Antibacterial activity of anacardic acid and totarol, alone and in combination with methicillin, against methicillin-resistant Staphylococcus aureus. J Appl Bacteriol 80:387–394

    Article  CAS  Google Scholar 

  • Oo TZ, Cole N, Garthwaite L, Willcox MD, Zhu H (2010) Evaluation of synergistic activity of bovine lactoferricin with antibiotics in corneal infection. J Antimicrob Chemother 65:1243–1251

    Article  CAS  Google Scholar 

  • Sharma A, Bajpai VK, Baek K (2013) Determination of antibacterial mode of action of allium sativum essential oil against foodborne pathogens using membrane permeability and surface characteristic parameters. J Food Saf 33:197–208

    Article  Google Scholar 

  • Shen SX, Zhang TH, Yuan Y, Lin SY, Xu JY, Ye H et al (2015) Effects of cinnamaldehyde on Escherichia coli and Staphylococcus aureus membrane. Food Control 47:196–202

    Article  CAS  Google Scholar 

  • Sikkema J, De Bont JAM, Poolman B (1995) Mechanism of membrane toxicity on hydrocarbons. Microbiol Rev 59:201–222

    CAS  Google Scholar 

  • Singleton P (1999) Bacteria in biology, biotechnology and medicine, 5th edn. Wiley, New York. ISBN 0-471-98880-4

    Google Scholar 

  • Smith EC, Kaatz GW, Seo SM, Wareham N, Williamson EM, Gibbons S (2007) The phenolic diterpene totarol inhibits multidrug efflux pump activity in Staphylococcus aureus. Antimicrob Agents Chemother 51:4480–4483

    Article  CAS  Google Scholar 

  • Stojković D, Zivković J, Soković M, Glamočlija J, Ferreira ICFR, Janković T et al (2013) Antibacterial activity of Veronica montana L. extract and of protocatechuic acid incorporated in a food system. Food Chem Toxicol 55:209–213

    Article  Google Scholar 

  • Tian J, Zeng X, Feng Z, Miao X, Peng X, Wang Y (2014) Zanthoxylum molle Rehd. Essential oil as a potential natural preservative in management of Aspergillus flavus. Ind Crops Prod 60:151–159

    Article  CAS  Google Scholar 

  • Tyagi AK, Bukvicki D, Gottardi D, Veljic M, Guerzoni ME, Malik A et al (2013) Antimicrobial potential and chemical characterization of Serbian liverworth (Porella arboris-vitae): SEM and TEM observations. Evid Based Complement Alternat Med 2013:382927

    Google Scholar 

  • Wang LH, Wang MS, Zeng XA, Liu ZW (2016) Temperature mediated variations in cellular membrane fatty acid composition of Staphylococcus aureus in resistance to pulsed electric fields. Biochim Biophys Acta 1858:1791–1800

    Article  CAS  Google Scholar 

  • Yan T, Li-Hong Q, Jing X (2011) Effect of chitosan on membrane permeability and cell morphology of Pseudomonas aeruginosa and Staphyloccocus aureus. Carbohydr Polym 86:969–974

    Article  Google Scholar 

  • Zhao X, Shi C, Meng R, Liu Z, Huang Y, Zhao Z et al (2016) Effect of nisin and perilla oil combination against Listeria monocytogenes and Staphylococcus aureus in milk. J Food Sci Technol 53:2644–2653

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support for this work came from the following sources: the National Nature Science Foundation of China (Nos. 31271951 and 81573448), China Postdoctoral Science Foundation (2013M530142), the Program for New Century Excellent Talents in University (NCET-13-0245) and Natural Science Foundation of Jilin Province (20150101009JC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Na Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, C., Che, M., Zhang, X. et al. Antibacterial activity and mode of action of totarol against Staphylococcus aureus in carrot juice. J Food Sci Technol 55, 924–934 (2018). https://doi.org/10.1007/s13197-017-3000-2

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-017-3000-2

Keyword

Navigation