Skip to main content
Log in

Antimicrobial resistance in diarrheagenic Escherichia coli from ready-to-eat foods

  • Original Article
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

Certain subgroups of Escherichia coli have congenital or acquired virulence properties that allow them to cause a wide spectrum of disease. The aim of this study was to investigate the occurrence of diarrheagenic E. coli strains in ready-to-eat (RTE) foods produced in institutional, commercial and hotel restaurants in Salvador, Brazil. The presence of virulent isolates and antimicrobial resistance were evaluated. Four hundred forty-six samples were collected and grouped into cereals and vegetables, meat-based preparations, cooked salads, raw salads, garnishes, soups and sauces, desserts and juices. E. coli were detected using the most probable number method, the presence of virulence factors in isolates was determined by polymerase chain reaction (PCR) assays, and antibiotic resistance was analyzed using the disc diffusion method. In total, 15 isolates (3.1%) of E. coli were recovered; raw salads had the highest detection rate, 1.4%, followed by cooked salads, 0.8%; meat-based preparations, 0.4%; and cereals and vegetables, 0.4%. PCR assays showed that none of the isolates had the virulence genes cnf1, cnf2, eae, sta, lt1, stx1, stx2 or cdtB. The isolates showed resistance to nine antibiotics of the 15 tested, and the highest levels of resistance were found for sulfamethoxazole/trimethoprim, tetracycline, ampicillin, and chloramphenicol (13.3% of isolates for each antibiotic). One isolate from cooked salad had plasmid-mediated multidrug resistance to tetracycline, trimethoprim/sulfamethoxazole, ampicillin and chloramphenicol. These results suggest that RTE foods, especially raw salads, can be reservoirs of E. coli and facilitate the spread of antibiotic resistance genes to the gastrointestinal microbiota of humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • APHA (2001) Compendium of methods for the microbiological examination of foods, 4th edn. American Public Health Association, Washington, D.C

    Google Scholar 

  • Barros MR, Silveira WD, Araújo JM, Costa EP, Oliveira AAF, Santos APSF et al (2012) Resistência antimicrobiana e perfil plasmidial de Escherichia coli isolada de frangos de corte e poedeiras comerciais no Estado de Pernambuco. Pesq Vet Bras 32:405–410

    Article  Google Scholar 

  • Bautista-De Léon H, Gómez-Aldapa CA, Rangel-Vargas E, Vázquez-Barrios E, Castro-Rosas J (2013) Frequency of indicator bacteria, Salmonella and diarrheagenic Escherichia coli pathotypes on ready-to-eat cooked vegetable salads from Mexican restaurants. Lett Appl Microbiol 56:414–420. doi:10.1111/lam.12063

    Article  Google Scholar 

  • Blanco M, Blanco JE, Blanco J, Alonso MP, Balsalobre C, Mouriño M et al (1996) Polymerase chain reaction for detection of Escherichia coli strains producing cytotoxic necrotizing factor type 1 and type 2 (CNFl and CNF2). J Microbiol Methods 26:95–101

    Article  CAS  Google Scholar 

  • Brasil (2001) Ministério da Saúde, Brasil. Resolução RDC no 12, de 02 de janeiro de 2001. http://portal.anvisa.gov.br/wps/wcm/connect/a47bab8047458b909541d53fbc4c6735/RDC_12_2001.pdf?MOD=AJPERES. Accessed 26 Feb 2016

  • Brasil (2016) Ministério da Saúde, Brasil. Doenças transmitidas por alimentos. http://portalsaude.saude.gov.br/images/pdf/2016/marco/10/Apresenta-dados-gerais-DTA-2016.pdf. Accessed 15 Mar 2016

  • Campos J, Mourão J, Pestana N, Peixe L, Novais C, Antunes P (2013) Microbiological quality of ready-to-eat salads: an underestimated vehicle of bacteria and clinically relevant antibiotic resistance genes. Int J Food Microbiol 166:464–470. doi:10.1016/j.ijfoodmicro.2013.08.005

    Article  Google Scholar 

  • Canizalez-Roman A, Gonzalez-Nuñez E, Vidal JE, Flores-Villaseñor H, Léon-Sicairos N (2013) Prevalence and antibiotic resistance profiles of diarrheagenic Escherichia coli strains isolated from food items in northwestern Mexico. Int J Food Microbiol 164:36–45. doi:10.1016/j.ijfoodmicro.2013.03.020

    Article  CAS  Google Scholar 

  • CDC (2012) Pathogens causing US foodborne illnesses, hospitalizations, and deaths, 2000–2008. http://www.cdc.gov/foodborneburden/pdfs/pathogens-complete-list-04-12.pdf. Accessed 18 Jan 2016

  • CLSI (2013) Performance standards for antimicrobial susceptibility testing; twenty-third informational supplement. Clinical and Laboratory Standards Institute

  • Gómez-Aldapa CA, Rangel-Vargas E, Castro-Rosas J (2013) Frequency and correlation of some enteric indicator bacteria and Salmonella in ready-to-eat raw vegetable salads from Mexican restaurants. J Food Sci 78:M1201–M1207. doi:10.1111/1750-3841.12182

    Article  Google Scholar 

  • Jeffrey L, Gurtler JB, Stawick BA (2001) Enterobacteriaceae, coliforms, and Escherichia coli as quality and safety indicators. In: Downes FP, Ito K (eds) Compendium of methods for the microbiological examination of foods, 4th edn. American Public Health Association, Washington, pp 69–82

    Google Scholar 

  • Jiang X, Yu T, Wu N, Meng H, Shi L (2014) Detection of qnr, aac (6′)-Ib-cr and qepA genes in Escherichia coli isolated from cooked meat products in Henan, China. Int J Food Microbiol 187:22–25. doi:10.1016/j.ijfoodmicro.2014.06.026

    Article  CAS  Google Scholar 

  • Kaper JB, Nataro JP, Mobley HLT (2004) Pathogenic Escherichia coli. Nat Rev 2:123–140. doi:10.1038/nrmicro818

    CAS  Google Scholar 

  • Krumperman PH (1983) Multiple antibiotic resistance indexing of Escherichia coli to identify high-risk sources of fecal contamination of foods. Appl Environ Microbiol 46:165–170

    CAS  Google Scholar 

  • Li R, Tan X, Xiao J, Wang H, Liu Z, Zhou M, Bi W, Miyamoto T (2016) Molecular screening and characterization of Shiga toxin-producing Escherichia coli in retail foods. Food Control 60:180–188. doi:10.1016/j.foodcont.2015.07.045

    Article  CAS  Google Scholar 

  • Min SC, Roh SH, Niemira BA, Boyd G, Sites JE, Uknalis J, Fan X (2017) In-package inhibition of E. coli O157:H7 on bulk Romaine lettuce using cold plasma. Food Microbiol 65:1–6. doi:10.1016/j.fm.2017.01.010

    Article  CAS  Google Scholar 

  • Molina-Aja A, Garcia-Gasca A, Abreu-Grobois A, Bolán-Mejía C, Roque A, Gomez-Gil B (2002) Plasmid profiling and antibiotic resistance of Vibrio strains isolated from cultured penaeid shrimp. FEMS Microbiol Lett 213:7–12

    Article  CAS  Google Scholar 

  • Newell DG, Koopmans M, Verhoef L, Duizer E, Aidara-Kane A, Sprong H et al (2010) Food-borne diseases—the challenges of 20 years ago still persist while new ones continue to emerge. Int J Food Microbiol 139:S3–S15. doi:10.1016/j.ijfoodmicro.2010.01.021

    Article  Google Scholar 

  • Ojeniyi B, Ahrens P, Meyling A (1994) Detection of fimbrial and toxin genes in Escherichia coli and their prevalence with piglets with diarrhea: the application of colony hybridization assay polymerase chain reaction and phenotype assays. J Vet Med 41:49–59

    Article  CAS  Google Scholar 

  • Olaimat AN, Holley RA (2012) Factors influencing the microbial safety of fresh produce: a review. Food Microbiol 32:1–19. doi:10.1016/j.fm.2012.04.016

    Article  CAS  Google Scholar 

  • Olsvik O, Strockbine NA (1993) PCR detection of heat-stable, and Shiga-like toxin genes in Escherichia coli. In: Persing DH, Smith TF, Tenover FC, White TJ (eds) Diagnostic molecular microbiology. American Society for Microbiology, Washington, pp 271–276

    Google Scholar 

  • Orskov I, Orskov F, Rowe B (1984) Six new E. coli O groups: O165, O166, O167, O168, O169 and O170. Acta Pathologica, Microbiologica, et Immunologica Scandinavica. Section B 92:189–193

    CAS  Google Scholar 

  • Peresi JTM, Almeida IAZC, Vaz TMI, Hernandez RT, Teixeira ISC, Silva SIL et al (2016) Search for diarrheagenic Escherichia coli in raw kibbe samples reveals the resence of Shiga toxin-producing strains. Food Control 63:165–170. doi:10.1016/j.foodcont.2015.11.018

    Article  CAS  Google Scholar 

  • Ryu S, Lee J, Park S, Song M, Park S, Jung H et al (2012) Antimicrobial resistance profiles among Escherichia coli strains isolated from commercial and cooked foods. Int J Food Microbiol 159:263–266. doi:10.1016/j.ijfoodmicro.2011.10.003

    Article  CAS  Google Scholar 

  • Schultsz C, Pool GJ, Ketel R, Wever B, Speelman P, Dankert J (1994) Detection of enterotoxigenic Escherichia coli in stool samples by using nonradioactively labeled oligonucleotide DNA probes and PCR. J Clin Microbiol 32:2393–2397

    CAS  Google Scholar 

  • Silva AS, Leite DS (2002) Investigation of putative CDT gene in Escherichia coli isolates from pigs with diarrhea. Vet Microbiol 89:195–199

    Article  Google Scholar 

  • Silva GJ, Mendonça N (2012) Association between antimicrobial resistance and virulence in Escherichia coli. Virulence 3:18–28. doi:10.4161/viru.3.1.18382

    Article  Google Scholar 

  • Siqueira AK, Ribeiro MG, Leite DS, Tiba MR, Moura C, Lopes MD et al (2009) Virulence factors in Escherichia coli strains isolated from urinary tract infection and pyometra cases and from feces of healthy dogs. Res Vet Sci 86:206–210. doi:10.1016/j.rvsc.2008.07.018

    Article  CAS  Google Scholar 

  • Sospedra I, Rubert J, Soriano JM, Mañes J (2013) Survey of microbial quality of plant-based foods served in restaurants. Food Control 30:418–422. doi:10.1016/j.foodcont.2012.08.004

    Article  Google Scholar 

  • Taban BM, Halkman AK (2011) Do leafy green vegetables and their ready-to-eat (RTE) salads carry a risk of foodborne pathogens? Anaerobe 17:286–287. doi:10.1016/j.anaerobe.2011.04.004

    Article  Google Scholar 

  • WHO (2015) Food safety. http://www.who.int/mediacentre/factsheets/fs399/en/. Accessed 1 Mar 2016

  • Whyte P, McGill K, Monahan C, Collins JD (2004) The effect of sampling time on the levels of microorganisms recovered from broiler carcasses in a commercial slaughter plant. Food Microbiol 21:59–65. doi:10.1016/S0740-0020(03)00040-6

    Article  Google Scholar 

  • Yang S, Pei X, Wang G, Yan L, Hu J, Li Y et al (2016) Prevalence of food-borne pathogens in ready-to-eat meat products in seven different Chinese regions. Food Control 65:92–98. doi:10.1016/j.foodcont.2016.01.009

    Article  Google Scholar 

  • Yu J, Kaper JB (1992) Cloning and characterization of the eae gene of enterohaemorragic Escherichia coli O157:H7. Mol Microbiol 6:411–417

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the technical team of the Food Microbiology Laboratory and Dr. Alaise Gil Guimarães of the Federal University of Bahia, and Dr. Tomomasa Yano of the Campinas University, for their support during the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rogeria Comastri de Castro Almeida.

Ethics declarations

Conflict of interest

The authors declares that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lima, C.M., Souza, I.E.G.L., dos Santos Alves, T. et al. Antimicrobial resistance in diarrheagenic Escherichia coli from ready-to-eat foods. J Food Sci Technol 54, 3612–3619 (2017). https://doi.org/10.1007/s13197-017-2820-4

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-017-2820-4

Keywords

Navigation