Skip to main content
Log in

Molecular evaluation and antimicrobial susceptibility testing of Escherichia coli isolates from food products in Turkey

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Some strains of Escherichia coli can be important food borne pathogens. Characterization and antimicrobial resistance testing of 28 E. coli isolates from random food samples obtained in Van, Turkey were performed. Primers for 6 indicator genes (fliC, stx1, stx2, eae, hlyA, and rfbE) for shiga toxin-producing E. coli and 5 indicator genes for each pathogroup (bfpA, aggR, ipaH, daaD, st, and lt) were used. E. coli isolates were also typed using pulsed field gel electrophoresis with the XbaI restriction enzyme. Antimicrobial susceptibility of E. coli isolates was determined using the disk diffusion method for 17 antimicrobials. E. coli isolates were non-pathogenic strains represented by 25 distinguishable PFGE patterns. Antimicrobial susceptibility testing revealed that more than 40% of the E. coli isolates showed resistance to ampicillin, sulphafurazole, and tetracycline. Antimicrobial susceptibility of commensal E. coli should be monitored because these bacteria are becoming reservoirs of antimicrobial resistance genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Farrokh C, Jordan K, Auvray F, Glass K, Oppegaard H, Raynaud S, Thevenot D, Condron R, De Reu K, Govaris A, Heggum K, Heyndrickx M, Hummerjohann J, Lindsay D, Miszczycha S, Moussiegt S, Verstraete K, Cerf O. Review of Shiga-toxinproducing Escherichia coli (STEC) and their signicance in dairy production. Int. J. Food Microbiol. 162: 190–212 (2013)

    Article  CAS  Google Scholar 

  2. Rendon MA, Saldana Z, Erdem AL, Monterio-Neto V, Vazquez A, Kaper JB, Puente JL, Giron JA. Commensal and pathogenic Escherichia coli use a common pilus adherence factor for epithelial cell colonization. P. Natl. Acad. Sci. USA 104: 10637–10642 (2007)

    Article  CAS  Google Scholar 

  3. World Health Organization (WHO). Antimicrobial resistance global report on surveillance. Available from: http://apps.who.int. Accessed June 22, 2014.

  4. Sorum H, Sunde M. Resistance to antibiotics in the normal flora of animals. Vet. Res. 32: 227–241 (2001)

    Article  CAS  Google Scholar 

  5. Export Promotion Center of Turkey, 2009. Turkish agriculture and food industry. Available from: http://samrioglu.com. Accessed May 19, 2014.

    Google Scholar 

  6. Jourdan-da Silva N, Watrin M, Weill FX, King LA, Gouali M, Mailles A, van Cauteren D, Bataille M, Guettier S, Castrale C, Henry P, Mariani P, Vaillant V, de Valk H. Outbreak of haemolytic uraemic syndrome due to Shiga toxin-producing Escherichia coli O104:H4 among French tourists returning from Turkey, September 2011. Euro Surveill. 17: 20065 (2012)

    Google Scholar 

  7. Wang XM, Liao XP, Liu SG, Zhang WJ, Jiang HX, Zhang MJ, Zhu HQ, Sun Y, Sun J, Li AX, Liu YH. Serotypes, virulence genes, and antimicrobial susceptibility of Escherichia coli isolates from pigs. Foodborne Pathog. Dis. 8: 687–692 (2011)

    Article  CAS  Google Scholar 

  8. Sabat AJ, Budimir A, Nashev D, Sá-Leão R, van Dijl JM, Laurent F, Grundmann H, Friedrich AW. Overview of molecular typing methods for outbreak detection and epidemiological surveillance. Euro Surveill. 18: 20380 (2013)

    CAS  Google Scholar 

  9. National Committee for Clinical Laboratory Standards. Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals. Available from http://clsi.org/ standards/. Accessed March 10, 2013.

    Google Scholar 

  10. Food and Drug Administration. Bacteriological Analytical Manual, Enumeration of Escherichia coli and the Coliform Bacteria. Available from: http://www.fda.gov/Food/FoodScienceResearch/ LaboratoryMethods/ucm064948.htm. Accessed March 10, 2013.

    Google Scholar 

  11. Rantsiou K, Alessandria V, Cocolin L. Prevalence of Shiga toxin-producing Escherichia coli in food products of animal origin as determined by molecular methods. Int. J. Food Microbiol. 154: 37–43 (2012)

    Article  CAS  Google Scholar 

  12. Stacy-Phipps S, Mecca JJ, Weiss JB. Multiplex PCR assay and simple preparation method for stool specimens detect enterotoxigenic Escherichia coli during course of infection. J. Clin. Microbiol. 33: 1054–1059 (1995)

    CAS  Google Scholar 

  13. Guion CE, Ochoa TJ, Walker CM, Barletta F, Cleary TG. Detection of diarrheagenic Escherichia coli by use of melting-curve analysis and real-time multiplex PCR. J. Clin. Microbiol. 7: 1752–1757 (2008)

    Article  Google Scholar 

  14. Botkin DJ, Galli L, Sankarapani V, Soler M, Rivas M, Torres AG. Development of a multiplex PCR assay for detection of Shigatoxinproducing Escherichia coli, enterohemorrhagic E. coli, and enteropathogenic E. coli strains. Front. Cell. Infect. Microbiol. 2: 8 (2012)

    Article  Google Scholar 

  15. Bai J, Shi X, Nagaraja TG. A multiplex PCR procedure for the detection of six major virulence genes in Escherichia coli O157:H7. J. Microbiol. Meth. 82: 85–89 (2010)

    Article  CAS  Google Scholar 

  16. Centers for Disease Control and Prevention. Standard Operating Procedure for PulseNet PFGE of Escherichia coli O157:H7, Escherichia coli non-O157 (STEC), Salmonella serotypes, Shigella sonnei and Shigella flexneri. Available from: http://www.cdc.gov/ pulsenet/PDF/ecoli-shigella-salmonella-pfge-protocol-508c.pdf. Accessed April 10, 2013.

  17. Todd EC. Epidemiology of foodborne diseases. A review. World Health Stat. Q. 50: 30–50 (1997)

    CAS  Google Scholar 

  18. European Food Safety Authority (EFSA), 2011. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks. Available from: http:// efsa.europa.au. Accessed May 14, 2014.

    Google Scholar 

  19. Smith-Palmer A, Locking M, Reilly B, Fisher I. Cluster of E. coli O157 infections in Scottish tourists returning from southwest Turkey, July-August 2005. Euro Surveill. 10: 2777 (2005)

    Google Scholar 

  20. Tolun V, Ang-Küçüker M, Diren S, Ang Ö. Detection of verotoxigenic Escherichia coli (VTEC) in stool samples of patients with diarrhea by PCR. J. Turk. Microbiol. 31: 174–177 (2001)

    Google Scholar 

  21. Reid KL, Rodriguez HM, Hillier BJ, Gregoret LM. Stability and folding properties of a model â-sheet protein, Escherichia coli CspA. Protein Sci. 7: 470–479 (1998)

    Article  CAS  Google Scholar 

  22. Karch H, Bielaszewska M. Sorbitol-fermenting shiga toxinproducing Escherichia coli O157:H(–) strains: Epidemiology,phenotypic and molecular characteristics, and microbiological diagnosis. J. Clin. Microbiol. 39: 2043–2049 (2001)

    Article  CAS  Google Scholar 

  23. Holvoet K, Sampers I, Callens B, Dewulf J, Uyttendaele M. Moderate prevalence of Antimicrobial Resistance in E. coli isolates from lettuce, irrigation water and soil. Appl. Environ. Microb. 79: 6677–6683 (2013)

    Article  CAS  Google Scholar 

  24. Allocati N, Masulli M, Alexeyev MF, Ilio CD. Escherichia coli in Europe: An overview. Int. J. Environ. Res. Public Health10: 6235–6254 (2013)

    Article  Google Scholar 

  25. Cengiz M, Sonal S, Buyukcangaz E, Sen A, Arslan E, Mat B, Sahinturk P, Gocmen H. Molecular characterisation of quinolone resistance in Escherichia coli from animals in Turkey. Vet. Rec. 171: 155 (2012)

    Article  CAS  Google Scholar 

  26. Weidmann M. Molecular subtyping methods for Listeria monocytogenes. J. AOAC Int. 185: 524–531 (2002)

    Google Scholar 

  27. Snipen L, Almoy T, Ussery DW. Microbial comparative pangenomics using binomial mixture models. BMC Genomics 10: 385 (2009)

    Article  Google Scholar 

  28. Goto DK, Yan T. Genotypic diversity of Escherichia coli in the water and soil of tropical watersheds in Hawaii. Appl. Environ. Microb. 77: 3988–3997 (2011)

    Article  CAS  Google Scholar 

  29. European Centre for Disease Prevention and Control. European Antimicrobial Resistance Surveillance Network (EARS-Net) Report. Available from: http://ecdc.europa.eu/en/activities/surveillance/ EARS-Net/Pages/index.aspx. Accessed June 16, 2013.

    Google Scholar 

  30. Brenwald NP, Andrews J, Fraise AP. Activity of mecillinam against AmpC beta-lactamase-producing Escherichia coli. J. Antimicrob. Chemoth. 58: 223–224 (2006)

    Article  CAS  Google Scholar 

  31. Sayah RS, Kaneene JB, Johnson Y, Miller R. Patterns of antimicrobial resistance observed in Escherichia coli isolates obtained from domestic and wild animal fecal samples, human septage, and surface water. Appl. Environ. Microb. 71: 1394–1404 (2005)

    Article  CAS  Google Scholar 

  32. Marshall BM, Levy SB. Food animals and antimicrobials: impacts on human health. Clin. Microbiol. Rev. 24: 718–733 (2011)

    Article  CAS  Google Scholar 

  33. Alhashash F, Weston V, Diggle M, McNally A. Multidrug-resistant Escherichia coli bacteremia. Emerg. Infect. Dis. 19: 1699–1701 (2013)

    Article  Google Scholar 

  34. Knezevic P, Petrovic O. Antibiotic resistance of commensal Escherichia coli of food-producing animals from three Vojvodinian farms, Serbia. Int. J. Antimicrob. Ag. 31: 360–363 (2008)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yeşim Soyer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kyere, E.O., Bulut, E., Dilek Avşaroğlu, M. et al. Molecular evaluation and antimicrobial susceptibility testing of Escherichia coli isolates from food products in Turkey. Food Sci Biotechnol 24, 1001–1009 (2015). https://doi.org/10.1007/s10068-015-0128-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-015-0128-6

Keywords

Navigation