Skip to main content

Advertisement

Log in

Nitroproteomics is instrumental for stratification and targeted treatments of astrocytoma patients: expert recommendations for advanced 3PM approach with improved individual outcomes

  • Review
  • Published:
EPMA Journal Aims and scope Submit manuscript

Abstract

Protein tyrosine nitration is a selectively and reversible important post-translational modification, which is closely related to oxidative stress. Astrocytoma is the most common neuroepithelial tumor with heterogeneity and complexity. In the past, the diagnosis of astrocytoma was based on the histological and clinical features, and the treatment methods were nothing more than surgery-assisted radiotherapy and chemotherapy. Obviously, traditional methods short falls an effective treatment for astrocytoma. In late 2021, the World Health Organization (WHO) adopted molecular biomarkers in the comprehensive diagnosis of astrocytoma, such as IDH-mutant and DNA methylation, which enabled the risk stratification, classification, and clinical prognosis prediction of astrocytoma to be more correct. Protein tyrosine nitration is closely related to the pathogenesis of astrocytoma. We hypothesize that nitroproteome is significantly different in astrocytoma relative to controls, which leads to establishment of nitroprotein biomarkers for patient stratification, diagnostics, and prediction of disease stages and severity grade, targeted prevention in secondary care, treatment algorithms tailored to individualized patient profile in the framework of predictive, preventive, and personalized medicine (PPPM; 3P medicine). Nitroproteomics based on gel electrophoresis and tandem mass spectrometry is an effective tool to identify the nitroproteins and effective biomarkers in human astrocytomas, clarifying the biological roles of oxidative/nitrative stress in the pathophysiology of astrocytomas, functional characteristics of nitroproteins in astrocytomas, nitration-mediated signal pathway network, and early diagnosis and treatment of astrocytomas. The results finds that these nitroproteins are enriched in mitotic cell components, which are related to transcription regulation, signal transduction, controlling subcellular organelle events, cell perception, maintaining cell homeostasis, and immune activity. Eleven statistically significant signal pathways are identified in astrocytoma, including remodeling of epithelial adherens junctions, germ cell-sertoli cell junction signaling, 14-3-3-mediated signaling, phagosome maturation, gap junction signaling, axonal guidance signaling, assembly of RNA polymerase III complex, and TREM1 signaling. Furthermore, protein tyrosine nitration is closely associated with the therapeutic effects of protein drugs, and molecular mechanism and drug targets of cancer. It provides valuable data for studying the protein nitration biomarkers, molecular mechanisms, and therapeutic targets of astrocytoma towards PPPM (3P medicine) practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data and materials are provided in this article and supplemental materials, which can be available publicly.

Abbreviations

3-NT :

3-nitrotyrosine

3-AT :

3-aminotyrosine

2DGE :

two-dimensional gel electrophoresis

Bcl-2 :

B cell lymphoma-2

Bak :

BCL2 antagonist/killer

BSA :

bovine serum albumin

CNS :

central nervous system

CID :

collision-induced dissociation

CCs :

cell components

eNOS :

endothelial nitric oxide synthase

ESI :

electrospray ionization

ECD :

electron-capture dissociation

ETD :

electron-transfer dissociation

FAD :

Food and Drug Administration

GAPDH :

glyceraldehyde-3-phosphate dehydrogenase

GO :

Gene Ontology

GBM :

glioblastoma

H2O2 :

hydrogen peroxide

H 2 S :

hydrogen sulfide

HPLC :

high-performance liquid chromatography

iTRAQ :

isobaric tag for relative absolute quantification

iNOS :

inducible form of nitric oxide synthase

IPA :

ingenuity canonical pathways

LC :

liquid chromatography

LPO :

lactoperoxidase

MS :

mass spectrometry

MS/MS :

tandem mass spectrometry

MALDI-TOF :

matrix-assisted laser desorption/ionization time-of-flight

MAPK :

mitogen-activated protein kinases

MnSOD :

manganese superoxide dismutase

MAD :

metastable atom-activated dissociation

MFs :

molecular functions

NO :

nitric oxide

NO 2 :

nitrogen dioxide

NOX2 :

nicotinamide adenine dinucleotide phosphate oxidase 2

NOS :

nitric oxide synthases

nNOS :

neuronal nitric oxide synthase

Nrf2 :

nuclear factor E2-related factor 2

NF-κB :

nuclear factor-kappaB

ONOO :

peroxynitrite

PRR :

pattern recognition receptor activity

RNS :

reactive nitrogen species

ROS :

reactive oxygen species

STAT1 :

signal transducer and activator of transcription 1

TCoB :

tubulin cofactor B

TCR :

T cell receptor

TMT :

tandem mass tags

TUBB :

nitrified tubulin β class I gene

UV :

ultraviolet

WHO :

World Health Organization

References

  1. Swanson RA, Ying W, Kauppinen TM. Astrocyte influences on ischemic neuronal death. Curr Mol Med. 2004;4(2):193–205. https://doi.org/10.2174/1566524043479185.

    Article  PubMed  CAS  Google Scholar 

  2. Darlington CL. Astrocytes as targets for neuroprotective drugs. Curr Opin Investig Drugs. 2005;6(7):700–3.

    PubMed  CAS  Google Scholar 

  3. Tani M, Glabinski AR, Tuohy VK, Stoler MH, Estes ML, Ransohoff RM. In situ hybridization analysis of glial fibrillary acidic protein mRNA reveals evidence of biphasic astrocyte activation during acute experimental autoimmune encephalomyelitis. Am J Pathol. 1996;148(3):889–96. http://www.ncbi.nlm.nih.gov/pmc/articles/pmc1861709/

    PubMed  PubMed Central  CAS  Google Scholar 

  4. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK. World Health Organization Classification of Tumours of the Central Nervous System. 4th ed. International Agency for Research on Cancer; 2016. https://doi.org/10.5858/2008-132-906-TWCOTO.

    Book  Google Scholar 

  5. Sejda A, Grajkowska W, Trubicka J, Szutowicz E, Wojdacz T, Kloc W, et al. WHO CNS5 2021 classification of gliomas: a practical review and road signs for diagnosing pathologists and proper patho-clinical and neuro-oncological cooperation. Folia Neuropathol. 2022;60(2):137–52. https://doi.org/10.5114/fn.2022.118183.

    Article  PubMed  Google Scholar 

  6. Fiore G, Di Cristo C, Monti G, Amoresano A, Columbano L, Pucci P, et al. Tubulin nitration in human gliomas. Neurosci Lett. 2006;394(1):57–62. https://doi.org/10.1016/j.neulet.2005.10.0117.

    Article  PubMed  CAS  Google Scholar 

  7. Simmons ML, Murphy S. Induction of nitric oxide synthase in glial cells. J Neurochem. 1992;59(3):897–905. https://doi.org/10.1111/j.1471-4159.1992.tb08328.x.

    Article  PubMed  CAS  Google Scholar 

  8. Cobbs CS, Brenman JE, Aldape KD, Bredt DS, Israel MA. Expression of nitric oxide synthase in human central nervous system tumors. Cancer Res. 1995;55(4):727–30.

    PubMed  CAS  Google Scholar 

  9. Iwata S, Nakagawa K, Harada H, Oka Y, Kumon Y, Sakaki S. Endothelial nitric oxide synthase expression in tumor vasculature is correlated with malignancy in human supratentorial astrocytic tumors. Neurosurgery. 1999;45(1):24–8. https://doi.org/10.1097/00006123-199907000-00006.

    Article  PubMed  CAS  Google Scholar 

  10. Broholm H, Rubin I, Kruse A, Braendstrup O, Schmidt K, Skriver EB, et al. Nitric oxide synthase expression and enzymatic activity in human brain tumors. Clin Neuropathol. 2003;22(6):273–81.

    PubMed  CAS  Google Scholar 

  11. Akaike T, Okamoto S, Sawa T, Yoshitake J, Tamura F, Ichimori K, et al. 8-nitroguanosine formation in viral pneumonia and its implication for pathogenesis. Proc Natl Acad Sci USA. 2003;100(2):685–90. https://doi.org/10.1073/pnas.023562310012.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Yoshitake J, Akaike T, Akuta T, Tamura F, Ogura T, Esumi H, et al. Nitric oxide as an endogenous mutagen for Sendai virus without antiviral activity. J Virol. 2004;78(16):8709–19. https://doi.org/10.1128/jvi.78.16.8709-8719.200413.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Terasaki Y, Akuta T, Terasaki M, Sawa T, Mori T, Okamoto T, et al. Guanine nitration in idiopathic pulmonary fibrosis and its implication for carcinogenesis. Am J Respir Crit Care Med. 2006;174(6):665–73. https://doi.org/10.1164/rccm.200510-1580OC.

    Article  PubMed  CAS  Google Scholar 

  14. Uppu RM, Squadrito GL, Pryor WA. Acceleration of peroxynitrite oxidations by carbon dioxide. Arch Biochem Biophys. 1996;327(2):335–43. https://doi.org/10.1006/abbi.1996.0131.

    Article  PubMed  CAS  Google Scholar 

  15. Radi R. Protein tyrosine nitration: biochemical mechanisms and structural basis of functional effects. Acc Chem Res. 2013;46(2):550–9. https://doi.org/10.1021/ar300234c.

    Article  PubMed  CAS  Google Scholar 

  16. Batthyány C, Bartesaghi S, Mastrogiovanni M, Lima A, Demicheli V, Radi R. Tyrosine-nitrated proteins: proteomic and bioanalytical aspects. Antioxid Redox Signal. 2017;26(7):313–28. https://doi.org/10.1089/ars.2016.6787.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. MacMillan-Crow LA, Crow JP, Kerby JD, Beckman JS, Thompson JA. Nitration and inactivation of manganese superoxide dismutase in chronic rejection of human renal allografts. Proc Natl Acad Sci USA. 1996;93(21):11853–8. https://doi.org/10.1073/pnas.93.21.11853.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Marcondes S, Turko IV, Murad F. Nitration of succinyl-CoA:3-oxoacid CoA-transferase in rats after endotoxin administration. Proc Natl Acad Sci USA. 2001;98(13):7146–51. https://doi.org/10.1073/pnas.141222598.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Zou M, Martin C, Ullrich V. Tyrosine nitration as a mechanism of selective inactivation of prostacyclin synthase by peroxynitrite. Biol Chem. 1997;378(7):707–13. https://doi.org/10.1515/bchm.1997.378.7.707.

    Article  PubMed  CAS  Google Scholar 

  20. Crow JP, Ye YZ, Strong M, Kirk M, Barnes S, Beckman JS. Superoxide dismutase catalyzes nitration of tyrosines by peroxynitrite in the rod and head domains of neurofilament-L. J Neurochem. 1997;69(5):1945–53. https://doi.org/10.1046/j.1471-4159.1997.69051945.x.

    Article  PubMed  CAS  Google Scholar 

  21. Knapp LT, Kanterewicz BI, Hayes EL, Klann E. Peroxynitrite-induced tyrosine nitration and inhibition of protein kinase C. Biochem Biophys Res Commun. 2001;286(4):764–70. https://doi.org/10.1006/bbrc.2001.5448.

    Article  PubMed  CAS  Google Scholar 

  22. Blanchard-Fillion B, Souza JM, Friel T, Jiang GC, Vrana K, Sharov V, et al. Nitration and inactivation of tyrosine hydroxylase by peroxynitrite. J Biol Chem. 2001;276(49):46017–23. https://doi.org/10.1074/jbc.M105564200.

    Article  PubMed  CAS  Google Scholar 

  23. Roberts ES, Hl L, Crowley JR, Vuletich JL, Osawa Y, Hollenberg PF. Peroxynitrite-mediated nitration of tyrosine and inactivation of the catalytic activity of cytochrome P450 2B1. Chem Res Toxicol. 1998;11(9):1067–74. https://doi.org/10.1021/tx980099b.

    Article  PubMed  CAS  Google Scholar 

  24. Ji Y, Neverova I, Van Eyk JE, Bennett BM. Nitration of tyrosine 92 mediates the activation of rat microsomal glutathione s-transferase by peroxynitrite. J Biol Chem. 2006;281(4):1986–91. https://doi.org/10.1074/jbc.M509480200.

    Article  PubMed  CAS  Google Scholar 

  25. Cassina AM, Hodara R, Souza JM, Thomson L, Castro L, Ischiropoulos H, et al. Cytochrome c nitration by peroxynitrite. J Biol Chem. 2000;275(28):21409–15. https://doi.org/10.1074/jbc.M909978199.

    Article  PubMed  CAS  Google Scholar 

  26. Godoy LC, Muñoz-Pinedo C, Castro L, Cardaci S, Schonhoff CM, King M, et al. Disruption of the M80-Fe ligation stimulates the translocation of cytochrome c to the cytoplasm and nucleus in nonapoptotic cells. Proc Natl Acad Sci USA. 2009;106(8):2653–8. https://doi.org/10.1073/pnas.0809279106.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Vadseth C, Souza JM, Thomson L, Seagraves A, Nagaswami C, Scheiner T, et al. Pro-thrombotic state induced by post-translational modification of fibrinogen by reactive nitrogen species. J Biol Chem. 2004;279(10):8820–6. https://doi.org/10.1074/jbc.M306101200.

    Article  PubMed  CAS  Google Scholar 

  28. Birnboim HC, Lemay AM, Lam DK, et al. Cutting edge: MHC class II-restricted peptides containing the inflammation-associated marker 3-nitrotyrosine evade central tolerance and elicit a robust cell-mediated immune response. J Immunol. 2003;171(2):528–32. https://doi.org/10.4049/jimmunol.171.2.528.

    Article  PubMed  CAS  Google Scholar 

  29. Markowitz J, Wang J, Vangundy Z, You J, Yildiz V, Yu L, et al. Nitric oxide mediated inhibition of antigen presentation from DCs to CD4+ T cells in cancer and measurement of STAT1 nitration. Sci Rep. 2017;7(1):15424. http://creativecommons.org/licenses/by/4.0/

    Article  PubMed  PubMed Central  Google Scholar 

  30. Molon B, Ugel S, Del Pozzo F, Soldani C, Zilio S, Avella D, et al. Chemokine nitration prevents intratumoral infiltration of antigen-specific T cells. J Exp Med. 2011;208(10):1949–62. https://doi.org/10.1084/jem.20101956.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Lipton SA. Neuronal protection and destruction by NO. Cell Death Differ. 1999;6(10):943–51. https://doi.org/10.1038/sj.cdd.4400580.

    Article  PubMed  CAS  Google Scholar 

  32. Low IC, Loh T, Huang Y, Virshup DM, Pervaiz S. Ser70 phosphorylation of Bcl-2 by selective tyrosine nitration of PP2A-B56δ stabilizes its antiapoptotic activity. Blood. 2014;124(14):2223–34. https://doi.org/10.1182/blood-2014-03-563296.

    Article  PubMed  CAS  Google Scholar 

  33. Gow AJ, Duran D, Malcolm S, Ischiropoulos H. Effects of peroxynitrite-induced protein modifications on tyrosine phosphorylation and degradation. FEBS Lett. 1996;385(1-2):63–6. https://doi.org/10.1016/0014-5793(96)00347-X.

    Article  PubMed  CAS  Google Scholar 

  34. Feng H, Hu B, Jarzynka MJ, Li Y, Keezer S, Johns TG, et al. Phosphorylation of dedicator of cytokinesis 1 (Dock180) at tyrosine residue Y722 by Src family kinases mediates EGFRvIII-driven glioblastoma tumorigenesis. Proc Natl Acad Sci USA. 2012;109(8):3018–23. https://doi.org/10.1073/pnas.1121457109.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Shi WQ, Cai H, Xu DD, Su XY, Lei P, Zhao YF, et al. Tyrosine phosphorylation/dephosphorylation regulates peroxynitrite-mediated peptide nitration. Regul Pept. 2007;144(1-3):1–5. https://doi.org/10.1016/j.regpep.2007.06.011.

    Article  PubMed  CAS  Google Scholar 

  36. Elfering SL, Haynes VL, Traaseth NJ, Ettl A, Giulivi C. Aspects, mechanism, and biological relevance of mitochondrial protein nitration sustained by mitochondrial nitric oxide synthase. Am J Physiol Heart Circ Physiol. 2004;286(1):H22–9. https://doi.org/10.1152/ajpheart.00766.2003.

    Article  PubMed  CAS  Google Scholar 

  37. Beckman JS, Chen J, Ischiropoulos H, Crow JP. Oxidative chemistry of peroxynitrite. Methods Enzymol. 1994;233:229–40. https://doi.org/10.1016/S0076-6879(94)33026-3.

    Article  PubMed  CAS  Google Scholar 

  38. Liu X, Miller MJ, Joshi MS, Thomas DD, Lancaster JR Jr. Accelerated reaction of nitric oxide with O2 within the hydrophobic interior of biological membranes. Proc Natl Acad Sci USA. 1998;95(5):2175–9. https://doi.org/10.1073/pnas.95.5.2175.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Abello N, Kerstjens HA, Postma DS, et al. Protein tyrosine nitration: selectivity, physicochemical and biological consequences, denitration, and proteomics methods for the identification of tyrosine-nitrated proteins. J Proteome Res. 2009;8(7):3222–38. https://doi.org/10.1021/pr900039c.

    Article  PubMed  CAS  Google Scholar 

  40. Aulak KS, Koeck T, Crabb JW, Stuehr DJ. Dynamics of protein nitration in cells and mitochondria. Am J Physiol Heart Circ Physiol. 2004;286(1):H30–8. https://doi.org/10.1152/ajpheart.00743.2003.

    Article  PubMed  CAS  Google Scholar 

  41. Souza JM, Daikhin E, Yudkoff M, Raman CS, Ischiropoulos H. Factors determining the selectivity of protein tyrosine nitration. Arch Biochem Biophys. 1999;371(2):169–78. https://doi.org/10.1006/abbi.1999.1480.

    Article  PubMed  CAS  Google Scholar 

  42. Luo Y, Li J, Zhang N, Wang Y, Zhong R. Identification of nitration sites by peroxynitrite on p16 protein. Protein J. 2012;31(5):393–400. https://doi.org/10.1007/s10930-012-9414-9.

    Article  PubMed  CAS  Google Scholar 

  43. Zhang H, Xu Y, Joseph J, Kalyanaraman B. Intramolecular electron transfer between tyrosyl radical and cysteine residue inhibits tyrosine nitration and induces thiyl radical formation in model peptides treated with myeloperoxidase, H2O2, and NO2-: EPR SPIN trapping studies. J Biol Chem. 2005;280(49):40684–98. https://doi.org/10.1074/jbc.M504503200.

    Article  PubMed  CAS  Google Scholar 

  44. Zhang H, Zielonka J, Sikora A, Joseph J, Xu Y, Kalyanaraman B. The effect of neighboring methionine residue on tyrosine nitration and oxidation in peptides treated with MPO, H2O2, and NO2(-) or peroxynitrite and bicarbonate: role of intramolecular electron transfer mechanism? Arch Biochem Biophys. 2009;484(2):134–45. https://doi.org/10.1016/j.abb.2008.11.018.

    Article  PubMed  CAS  Google Scholar 

  45. Ischiropoulos H. Biological tyrosine nitration: a pathophysiological function of nitric oxide and reactive oxygen species. Arch Biochem Biophys. 1998;356(1):1–11. https://doi.org/10.1006/abbi.1998.0755.

    Article  PubMed  CAS  Google Scholar 

  46. Lanone S, Manivet P, Callebert J, Launay JM, Payen D, Aubier M, et al. Inducible nitric oxide synthase (NOS2) expressed in septic patients is nitrated on selected tyrosine residues: implications for enzymic activity. Biochem J. 2002;366(Pt 2):399–404. https://doi.org/10.1042/bj20020339.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Lin HL, Zhang H, Waskell L, Hollenberg PF. The highly conserved Glu149 and Tyr190 residues contribute to peroxynitrite-mediated nitrotyrosine formation and the catalytic activity of cytochrome P450 2B1. Chem Res Toxicol. 2005;18(8):1203–10. https://doi.org/10.1021/tx050100o.

    Article  PubMed  CAS  Google Scholar 

  48. Koeck T, Fu X, Hazen SL, Crabb JW, Stuehr DJ, Aulak KS. Rapid and selective oxygen-regulated protein tyrosine denitration and nitration in mitochondria. J Biol Chem. 2004;279(26):27257–62. https://doi.org/10.1074/jbc.M401586200.

    Article  PubMed  CAS  Google Scholar 

  49. Kuo WN, Kanadia RN, Shanbhag VP, Toro R. Denitration of peroxynitrite-treated proteins by 'protein nitratases' from rat brain and heart. Mol Cell Biochem. 1999;201(1-2):11–6. https://doi.org/10.1023/a:1007024126947.

    Article  PubMed  CAS  Google Scholar 

  50. Irie Y, Saeki M, Kamisaki Y, Martin E, Murad F. Histone H1.2 is a substrate for denitrase, an activity that reduces nitrotyrosine immunoreactivity in proteins. Proc Natl Acad Sci USA. 2003;100(10):5634–9. https://doi.org/10.1073/pnas.1131756100.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Cairns RA, Harris IS, Mak TW. Regulation of cancer cell metabolism. Nat Rev Cancer. 2011;11(2):85–95. https://doi.org/10.1038/nrc2981.

    Article  PubMed  CAS  Google Scholar 

  52. Gloire G, Legrand-Poels S, Piette J. NF-kappaB activation by reactive oxygen species: fifteen years later. Biochem Pharmacol. 2006;72(11):1493–505. https://doi.org/10.1016/j.bcp.2006.04.011.

    Article  PubMed  CAS  Google Scholar 

  53. Rhee SG. Cell signaling. H2O2, a necessary evil for cell signaling. Science. 2006;312(5782):1882–3. https://doi.org/10.1126/science.1130481.

    Article  PubMed  Google Scholar 

  54. Salaheldin YA, Mahmoud SSM, Ngowi EE, Gbordzor VA, Li T, Wu DD, et al. Role of RONS and eIFs in Cancer Progression. Oxidative Med Cell Longev. 2021;2021:5522054. https://doi.org/10.1155/2021/5522054.

    Article  CAS  Google Scholar 

  55. Pölönen P, Jawahar Deen A, Leinonen HM, Jyrkkänen HK, Kuosmanen S, et al. Nrf2 and SQSTM1/p62 jointly contribute to mesenchymal transition and invasion in glioblastoma. Oncogene. 2019;38(50):7473–90. https://doi.org/10.1038/s41388-019-0956-6.

    Article  PubMed  CAS  Google Scholar 

  56. Haapasalo J, Nordfors K, Granberg KJ, Kivioja T, Nykter M, Haapasalo H, et al. NRF2, DJ1 and SNRX1 and their prognostic impact in astrocytic gliomas. Histol Histopathol. 2018;33(8):791–801. https://doi.org/10.14670/HH-11-973.

    Article  PubMed  CAS  Google Scholar 

  57. Chio IIC, Jafarnejad SM, Ponz-Sarvise M, Park Y, Rivera K, Palm W, et al. NRF2 Promotes Tumor Maintenance by Modulating mRNA Translation in Pancreatic Cancer. Cell. 2016;166(4):963–76. https://doi.org/10.1016/j.cell.2016.06.056.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Gill JG, Piskounova E, Morrison SJ. Cancer, oxidative stress, and metastasis. Cold Spring Harb Symp Quant Biol. 2016;81:163–75. https://doi.org/10.1101/sqb.2016.81.030791.

    Article  PubMed  Google Scholar 

  59. Yoo BK, Choi JW, Shin CY, Jeon SJ, Park SJ, Cheong JH, et al. Activation of p38 MAPK induced peroxynitrite generation in LPS plus IFN-gamma-stimulated rat primary astrocytes via activation of iNOS and NADPH oxidase. Neurochem Int. 2008;52(6):1188–97. https://doi.org/10.1016/j.neuint.

    Article  PubMed  CAS  Google Scholar 

  60. Bolan EA, Gracy KN, Chan J, Trifiletti RR, Pickel VM. Ultrastructural localization of nitrotyrosine within the caudate-putamen nucleus and the globus pallidus of normal rat brain. J Neurosci. 2000;20(13):4798–808. https://doi.org/10.1523/JNEUROSCI.20-13-04798.2000.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Tran AN, Boyd NH, Walker K, Hjelmeland AB. NOS Expression and NO function in glioma and implications for patient therapies. Antioxid Redox Signal. 2017;26(17):986–99. https://doi.org/10.1089/ars.2016.6820.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Feinstein DL, Reis DJ, Regunathan S. Inhibition of astroglial nitric oxide synthase type 2 expression by idazoxan. Mol Pharmacol. 1999;55(2):304–8. https://doi.org/10.1124/mol.55.2.304.

    Article  PubMed  CAS  Google Scholar 

  63. Chin K, Kurashima Y, Ogura T, Tajiri H, Yoshida S, Esumi H. Induction of vascular endothelial growth factor by nitric oxide in human glioblastoma and hepatocellular carcinoma cells. Oncogene. 1997;15(4):437–42. https://doi.org/10.1038/sj.onc.1201201.

    Article  PubMed  CAS  Google Scholar 

  64. Tanriover N, Ulu MO, Isler C, Durak H, Oz B, Uzan M, et al. Neuronal nitric oxide synthase expression in glial tumors: correlation with malignancy and tumor proliferation. Neurol Res. 2008;30(9):940–4. https://doi.org/10.1179/174313208X319099.

    Article  PubMed  Google Scholar 

  65. Jin HO, Park IC, An S, Lee HC, Woo SH, Hong YJ, et al. Up-regulation of Bak and Bim via JNK downstream pathway in the response to nitric oxide in human glioblastoma cells. J Cell Physiol. 2006;206(2):477–86. https://doi.org/10.1002/jcp.20488.

    Article  PubMed  CAS  Google Scholar 

  66. Lovat PE, Oliverio S, Corazzari M, Rodolfo C, Ranalli M, Goranov B, et al. Bak: a downstream mediator of fenretinide-induced apoptosis of SH-SY5Y neuroblastoma cells. Cancer Res. 2003;63(21):7310–3.

    PubMed  CAS  Google Scholar 

  67. Park SW, Huq MD, Hu X, Wei LN. Tyrosine nitration on p65: a novel mechanism to rapidly inactivate nuclear factor-kappaB. Mol Cell Proteomics. 2005;4(3):300–9. https://doi.org/10.1074/mcp.M400195-MCP200.

    Article  PubMed  CAS  Google Scholar 

  68. Oda T, Kasahara T, Matsuura M, Mukaida N. Nitric oxide-mediated modulation of interleukin-8 production by a human glioblastoma cell line, T98G, cocultured with myeloid and monocytic cell lines. J Interf Cytokine Res. 1998;18(10):905–12. https://doi.org/10.1089/jir.1998.18.905.

    Article  CAS  Google Scholar 

  69. Colasanti M, Mollace V, Cundari E, Massoud R, Nisticò G, Lauro GM. The generation of nitric oxide participates in gamma IFN-induced MHC class II antigen expression by cultured astrocytoma cells. Int J Immunopharmacol. 1993;15(6):763–71. https://doi.org/10.1016/0192-0561(93)90150-w.

    Article  PubMed  CAS  Google Scholar 

  70. Cobbs CS, Samanta M, Harkins LE, Gillespie GY, Merrick BA, MacMillan-Crow LA. Evidence for peroxynitrite-mediated modifications to p53 in human gliomas: possible functional consequences. Arch Biochem Biophys. 2001;394(2):167–72. https://doi.org/10.1006/abbi.2001.2540.

    Article  PubMed  CAS  Google Scholar 

  71. Cobbs CS, Whisenhunt TR, Wesemann DR, Harkins LE, Van Meir EG, Samanta M. Inactivation of wild-type p53 protein function by reactive oxygen and nitrogen species in malignant glioma cells. Cancer Res. 2003;63(24):8670–3.

    PubMed  CAS  Google Scholar 

  72. Li X, De Sarno P, Song L, Beckman JS, Jope RS. Peroxynitrite modulates tyrosine phosphorylation and phosphoinositide signaling in human neuroblastoma SH-SY5Y cells: attenuated effects in human 1321N1 astrocytoma cells. Biochem J. 1998;331(2):599–606. https://doi.org/10.1042/bj3310599.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Qiao S, Li W, Tsubouchi R, Haneda M, Murakami K, Yoshino M. Involvement of peroxynitrite in capsaicin-induced apoptosis of C6 glioma cells. Neurosci Res. 2005;51(2):175–83. https://doi.org/10.1016/j.neures.2004.10.006.

    Article  PubMed  CAS  Google Scholar 

  74. Ahmed KA, Sawa T, Ihara H, Kasamatsu S, Yoshitake J, Rahaman MM, et al. Regulation by mitochondrial superoxide and NADPH oxidase of cellular formation of nitrated cyclic GMP: potential implications for ROS signalling. Biochem J. 2012;441(2):719–30. https://doi.org/10.1042/BJ20111130.

    Article  PubMed  CAS  Google Scholar 

  75. Fujii S, Sawa T, Ihara H, Tong KI, Ida T, Okamoto T, et al. The critical role of nitric oxide signaling, via protein S-guanylation and nitrated cyclic GMP, in the antioxidant adaptive response. J Biol Chem. 2010;285(31):23970–84. https://doi.org/10.1074/jbc.M110.145441.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Gadau S, Lepore G, Zedda M, Manca P, Chisu V, Farina V. D-glucose induces microtubular changes in C1300 neuroblastoma cell line through the incorporation of 3-nitro-L-tyrosine into tubulin. Arch Ital Biol. 2008;146(2):107–17.

    PubMed  CAS  Google Scholar 

  77. Aulak KS, Miyagi M, Yan L, West KA, Massillon D, Crabb JW, et al. Proteomic method identifies proteins nitrated in vivo during inflammatory challenge. Proc Natl Acad Sci USA. 2001;98(21):12056–61. https://doi.org/10.1073/pnas.221269198.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Dalle-Donne I, Scaloni A, Giustarini D, Cavarra E, Tell G, Lungarella G, et al. Proteins as biomarkers of oxidative/nitrosative stress in diseases: the contribution of redox proteomics. Mass Spectrom Rev. 2005;24(1):55–99. https://doi.org/10.1002/mas.20006.

    Article  PubMed  CAS  Google Scholar 

  79. Sarver A, Scheffler NK, Shetlar MD, Gibson BW. Analysis of peptides and proteins containing nitrotyrosine by matrix-assisted laser desorption/ionization mass spectrometry. J Am Soc Mass Spectrom. 2001;12(4):439–48. https://doi.org/10.1016/S1044-0305(01)00213-6.

    Article  PubMed  CAS  Google Scholar 

  80. Pirlog R, Susman S, Iuga CA, Florian SI. Proteomic advances in glial tumors through mass spectrometry approaches. Medicina (Kaunas). 2019;55(8):412. https://doi.org/10.3390/medicina55080412.

    Article  PubMed  Google Scholar 

  81. Hao G, Gross SS. Electrospray tandem mass spectrometry analysis of S- and N-nitrosopeptides: facile loss of NO and radical-induced fragmentation. J Am Soc Mass Spectrom. 2006;17(12):1725–30. https://doi.org/10.1016/j.jasms.2006.07.026.

    Article  PubMed  CAS  Google Scholar 

  82. Wang Y, Liu T, Wu C, Li H. A strategy for direct identification of protein S-nitrosylation sites by quadrupole time-of-flight mass spectrometry. J Am Soc Mass Spectrom. 2008;19(9):1353–60. https://doi.org/10.1016/j.jasms.2008.06.001.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Petersson AS, Steen H, Kalume DE, Caidahl K, Roepstorff P. Investigation of tyrosine nitration in proteins by mass spectrometry. J Mass Spectrom. 2001;36(6):616–25. https://doi.org/10.1002/jms.161.

    Article  PubMed  CAS  Google Scholar 

  84. Jones AW, Mikhailov VA, Iniesta J, Cooper HJ. Electron capture dissociation mass spectrometry of tyrosine nitrated peptides. J Am Soc Mass Spectrom. 2010;21(2):268–77. https://doi.org/10.1016/j.jasms.2009.10.011.

    Article  PubMed  CAS  Google Scholar 

  85. Mikhailov VA, Iniesta J, Cooper HJ. Top-down mass analysis of protein tyrosine nitration: comparison of electron capture dissociation with "slow-heating" tandem mass spectrometry methods. Anal Chem. 2010;82(17):7283–92. https://doi.org/10.1021/ac101177r.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Cook SL, Jackson GP. Characterization of tyrosine nitration and cysteine nitrosylation modifications by metastable atom-activation dissociation mass spectrometry. J Am Soc Mass Spectrom. 2011;22(2):221–32. https://doi.org/10.1007/s13361-010-0041-4.

    Article  PubMed  CAS  Google Scholar 

  87. Peng F, Li J, Guo T, Yang H, Li M, Sang S, et al. Nitroproteins in human astrocytomas discovered by gel electrophoresis and tandem mass spectrometry. J Am Soc Mass Spectrom. 2015;26(12):2062–76. https://doi.org/10.1007/s13361-015-1270-3.

    Article  PubMed  CAS  Google Scholar 

  88. Zhan X, Desiderio DM. MALDI-induced fragmentation of leucine enkephalin, nitro-tyr leucine enkaphalin, and d(5)-phe-nitro-tyr leucine enkephalin. Int J Mass Spectrom. 2009;287(1-3):77–86. https://doi.org/10.1016/j.ijms.2008.08.020.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Kanski J, Behring A, Pelling J, Schöneich C. Proteomic identification of 3-nitrotyrosine-containing rat cardiac proteins: effects of biological aging. Am J Physiol Heart Circ Physiol. 2005;288(1):H371–81. https://doi.org/10.1152/ajpheart.01030.2003.

    Article  PubMed  CAS  Google Scholar 

  90. Liu Z, Cao J, Ma Q, Gao X, Ren J, Xue Y. GPS-YNO2: computational prediction of tyrosine nitration sites in proteins. Mol BioSyst. 2011;7(4):1197–204. https://doi.org/10.1039/c0mb00279h.

    Article  PubMed  CAS  Google Scholar 

  91. Xu Y, Wen X, Wen LS, Wu LY, Deng NY, et al. iNitro-Tyr: prediction of nitrotyrosine sites in proteins with general pseudo amino acid composition. PLoS One. 2014;9(8):e105018. https://doi.org/10.1371/journal.pone.0105018.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Xie Y, Luo X, Li Y, Chen L, Ma W, et al. DeepNitro: prediction of protein nitration and nitrosylation sites by deep learning. Genom Proteom Bioinform. 2018;16(4):294–306. https://doi.org/10.1016/j.gpb.2018.04.007.

    Article  Google Scholar 

  93. Nikov G, Bhat V, Wishnok JS, Tannenbaum SR. Analysis of nitrated proteins by nitrotyrosine-specific affinity probes and mass spectrometry. Anal Biochem. 2003;320(2):214–22. https://doi.org/10.1016/s0003-2697(03)00359-2.

    Article  PubMed  CAS  Google Scholar 

  94. Kanski J, Schöneich C. Protein nitration in biological aging: proteomic and tandem mass spectrometric characterization of nitrated sites. Methods Enzymol. 2005;396:160–71. https://doi.org/10.1016/S0076-6879(05)96016-3.

    Article  PubMed  CAS  Google Scholar 

  95. Zhang Q, Qian WJ, Knyushko TV, Clauss TR, Purvine SO, et al. A method for selective enrichment and analysis of nitrotyrosine-containing peptides in complex proteome samples. J Proteome Res. 2007;6(6):2257–68. https://doi.org/10.1021/pr0606934.

    Article  PubMed  CAS  Google Scholar 

  96. Abello N, Barroso B, Kerstjens HA, Postma DS, Bischoff R. Chemical labeling and enrichment of nitrotyrosine-containing peptides. Talanta. 2010;80(4):1503–12. https://doi.org/10.1016/j.talanta.2009.02.002.

    Article  PubMed  CAS  Google Scholar 

  97. Kim JK, Lee JR, Kang JW, Lee SJ, Shin GC, Yeo WS, et al. Selective enrichment and mass spectrometric identification of nitrated peptides using fluorinated carbon tags. Anal Chem. 2011;83(1):157–63. https://doi.org/10.1021/ac102080d.

    Article  PubMed  CAS  Google Scholar 

  98. Dremina ES, Li X, Galeva NA, Sharov VS, Stobaugh JF, Schöneich C. A methodology for simultaneous fluorogenic derivatization and boronate affinity enrichment of 3-nitrotyrosine-containing peptides. Anal Biochem. 2011;418(2):184–96. https://doi.org/10.1016/j.ab.2011.07.024.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Kaur H, Halliwell B. Evidence for nitric oxide-mediated oxidative damage in chronic inflammation. Nitrotyrosine in serum and synovial fluid from rheumatoid patients. FEBS Lett. 1994;350(1):9–12. https://doi.org/10.1016/0014-5793(94)00722-5.

    Article  PubMed  CAS  Google Scholar 

  100. Ye YZ, Strong M, Huang ZQ, Beckman JS. Antibodies that recognize nitrotyrosine. Methods Enzymol. 1996;269:201–9. https://doi.org/10.1016/s0076-6879(96)69022-3.

    Article  PubMed  CAS  Google Scholar 

  101. Beckmann JS, Ye YZ, Anderson PG, Chen J, Accavitti MA, Tarpey MM, et al. Extensive nitration of protein tyrosines in human atherosclerosis detected by immunohistochemistry. Biol Chem Hoppe Seyler. 1994;375(2):81–8. https://doi.org/10.1515/bchm3.1994.375.2.81.

    Article  PubMed  CAS  Google Scholar 

  102. Khan J, Brennand DM, Bradley N, Gao B, Bruckdorfer R, Jacobs M. 3-Nitrotyrosine in the proteins of human plasma determined by an ELISA method. Biochem J. 1998;330(Pt 2):795–801. https://doi.org/10.1042/bj3300795.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Shigenaga MK. Quantitation of protein-bound 3-nitrotyrosine by high-performance liquid chromatography with electrochemical detection. Methods Enzymol. 1999;301:27–40. https://doi.org/10.1016/s0076-6879(99)01066-6.

    Article  PubMed  CAS  Google Scholar 

  104. Ohshima H, Celan I, Chazotte L, Pignatelli B, Mower HF. Analysis of 3-nitrotyrosine in biological fluids and protein hydrolyzates by high-performance liquid chromatography using a postseparation, on-line reduction column and electrochemical detection: results with various nitrating agents. Nitric Oxide. 1999;3(2):132–41. https://doi.org/10.1006/niox.1999.0216.

    Article  PubMed  CAS  Google Scholar 

  105. Sultana R, Reed T, Butterfield DA. Detection of 4-hydroxy-2-nonenal- and 3-nitrotyrosine-modified proteins using a proteomics approach. Methods Mol Biol. 2009;519:351–61. https://doi.org/10.1007/978-1-59745-281-6_22.

    Article  PubMed  CAS  Google Scholar 

  106. Wilcken B, Wiley V, Hammond J, Carpenter K. Screening newborns for inborn errors of metabolism by tandem mass spectrometry. N Engl J Med. 2003;348(23):2304–12. https://doi.org/10.1056/NEJMoa025225.

    Article  PubMed  CAS  Google Scholar 

  107. Lee SJ, Lee JR, Kim YH, Park YS, Park SI, Park HS, et al. Investigation of tyrosine nitration and nitrosylation of angiotensin II and bovine serum albumin with electrospray ionization mass spectrometry. Rapid Commun Mass Spectrom. 2007;21(17):2797–804. https://doi.org/10.1002/rcm.3145.

    Article  PubMed  CAS  Google Scholar 

  108. Tsikas D, Caidahl K. Recent methodological advances in the mass spectrometric analysis of free and protein-associated 3-nitrotyrosine in human plasma. J Chromatogr B Anal Technol Biomed Life Sci. 2005;814(1):1–9. https://doi.org/10.1016/j.jchromb.2004.10.003.

    Article  CAS  Google Scholar 

  109. Robinson RA, Evans AR. Enhanced sample multiplexing for nitrotyrosine-modified proteins using combined precursor isotopic labeling and isobaric tagging. Anal Chem. 2012;84(11):4677–86. https://doi.org/10.1021/ac202000v.

    Article  PubMed  CAS  Google Scholar 

  110. Zedda M, Lepore G, Gadau S, Manca P, Farina V. Morphological and functional changes induced by the amino acid analogue 3-nitrotyrosine in mouse neuroblastoma and rat glioma cell lines. Neurosci Lett. 2004;363(2):190–3. https://doi.org/10.1016/j.neulet.2004.04.008.

    Article  PubMed  CAS  Google Scholar 

  111. Rovini A, Gauthier G, Bergès R, Kruczynski A, Braguer D, Honoré S. Anti-migratory effect of vinflunine in endothelial and glioblastoma cells is associated with changes in EB1 C-terminal detyrosinated/tyrosinated status. PLoS One. 2013;8(6):e65694. https://doi.org/10.1371/journal.pone.0065694.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Chang W, Webster DR, Salam AA, Gruber D, Prasad A, Eiserich JP, et al. Alteration of the C-terminal amino acid of tubulin specifically inhibits myogenic differentiation. J Biol Chem. 2002;277(34):30690–8. https://doi.org/10.1074/jbc.M204930200.

    Article  PubMed  CAS  Google Scholar 

  113. Katsetos CD, Dráberová E, Smejkalová B, Reddy G, Bertrand L, de Chadarévian JP, et al. Class III beta-tubulin and gamma-tubulin are co-expressed and form complexes in human glioblastoma cells. Neurochem Res. 2007;32(8):1387–98. https://doi.org/10.1007/s11064-007-9321-1.

    Article  PubMed  CAS  Google Scholar 

  114. Komori T, Shibata N, Kobayashi M, Sasaki S, Iwata M. Inducible nitric oxide synthase (iNOS)-like immunoreactivity in argyrophilic, tau-positive astrocytes in progressive supranuclear palsy. Acta Neuropathol. 1998;95(4):338–44. https://doi.org/10.1007/s004010050808.

    Article  PubMed  CAS  Google Scholar 

  115. Rayala SK, Martin E, Sharina IG, Molli PR, Wang X, Jacobson R, et al. Dynamic interplay between nitration and phosphorylation of tubulin cofactor B in the control of microtubule dynamics. Proc Natl Acad Sci USA. 2007;104(49):19470–5. https://doi.org/10.1073/pnas.0705149104.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Prigent SA, Nagane M, Lin H, Huvar I, Boss GR, Feramisco JR, et al. Enhanced tumorigenic behavior of glioblastoma cells expressing a truncated epidermal growth factor receptor is mediated through the Ras-Shc-Grb2 pathway. J Biol Chem. 1996;271(41):25639–45. https://doi.org/10.1074/jbc.271.41.25639.

    Article  PubMed  CAS  Google Scholar 

  117. Chen R, Yang L, Fang J, Huo L, Zhang M, Chen F, et al. RRP22: a novel neural tumor suppressor for astrocytoma. Med Oncol. 2012;29(1):332–9. https://doi.org/10.1007/s12032-010-9795-6.

    Article  PubMed  CAS  Google Scholar 

  118. Di Stasi AM, Mallozzi C, Macchia G, Petrucci TC, Minetti M. Peroxynitrite induces tryosine nitration and modulates tyrosine phosphorylation of synaptic proteins. J Neurochem. 1999;73(2):727–35. https://doi.org/10.1046/j.1471-4159.1999.0730727.x.

    Article  PubMed  Google Scholar 

  119. Mallozzi C, D'Amore C, Camerini S, Macchia G, Crescenzi M, Petrucci TC, et al. Phosphorylation and nitration of tyrosine residues affect functional properties of synaptophysin and dynamin I, two proteins involved in exo-endocytosis of synaptic vesicles. Biochim Biophys Acta. 2013;1833(1):110–21. https://doi.org/10.1016/j.bbamcr.2012.10.022.

    Article  PubMed  CAS  Google Scholar 

  120. Sacksteder CA, Qian WJ, Knyushko TV, Wang H, Chin MH, Lacan G, et al. Endogenously nitrated proteins in mouse brain: links to neurodegenerative disease. Biochemistry. 2006;45(26):8009–22. https://doi.org/10.1021/bi060474w.

    Article  PubMed  CAS  Google Scholar 

  121. Estévez AG, Spear N, Manuel SM, Radi R, Henderson CE, Barbeito L, et al. Nitric oxide and superoxide contribute to motor neuron apoptosis induced by trophic factor deprivation. J Neurosci. 1998;18(3):923–31. https://doi.org/10.1523/JNEUROSCI.18-03-00923.1998.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Parihar MS, Parihar A, Fujita M, Hashimoto M, Ghafourifar P. Alpha-synuclein overexpression and aggregation exacerbates impairment of mitochondrial functions by augmenting oxidative stress in human neuroblastoma cells. Int J Biochem Cell Biol. 2009;41(10):2015–24. https://doi.org/10.1016/j.biocel.2009.05.008.

    Article  PubMed  CAS  Google Scholar 

  123. Souza JM, Choi I, Chen Q, Weisse M, Daikhin E, Yudkoff M, et al. Proteolytic degradation of tyrosine nitrated proteins. Arch Biochem Biophys. 2000;380(2):360–6. https://doi.org/10.1006/abbi.2000.1940.

    Article  PubMed  CAS  Google Scholar 

  124. Buchczyk DP, Briviba K, Hartl FU, Sies H. Responses to peroxynitrite in yeast: glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as a sensitive intracellular target for nitration and enhancement of chaperone expression and ubiquitination. Biol Chem. 2000;381(2):121–6. https://doi.org/10.1515/BC.2000.017.

    Article  PubMed  CAS  Google Scholar 

  125. Souza JM, Peluffo G, Radi R. Protein tyrosine nitration--functional alteration or just a biomarker? Free Radic Biol Med. 2008;45(4):357–66. https://doi.org/10.1016/j.freeradbiomed.2008.04.010.

    Article  PubMed  CAS  Google Scholar 

  126. Görg B, Bidmon HJ, Keitel V, Foster N, Goerlich R, Schliess F, et al. Inflammatory cytokines induce protein tyrosine nitration in rat astrocytes. Arch Biochem Biophys. 2006;449(1-2):104–14. https://doi.org/10.1016/j.abb.2006.02.012.

    Article  PubMed  CAS  Google Scholar 

  127. Meini A, Garcia JB, Pessina GP, Aldinucci C, Frosini M, Palmi M. Role of intracellular Ca2+ and calmodulin/MAP kinase kinase/extracellular signal-regulated protein kinase signalling pathway in the mitogenic and antimitogenic effect of nitric oxide in glia- and neurone-derived cell lines. Eur J Neurosci. 2006;23(7):1690–700. https://doi.org/10.1111/j.1460-9568.2006.04705.x.

    Article  PubMed  Google Scholar 

  128. Woiciechowsky C, Schöning B, Stoltenburg-Didinger G, Stockhammer F, Volk HD. Brain-IL-1 beta triggers astrogliosis through induction of IL-6: inhibition by propranolol and IL-10. Med Sci Monit. 2004;10(9):BR325-30.

    PubMed  Google Scholar 

  129. Meini A, Sticozzi C, Massai L, Palmi M. A nitric oxide/Ca(2+)/calmodulin/ERK1/2 mitogen-activated protein kinase pathway is involved in the mitogenic effect of IL-1beta in human astrocytoma cells. Br J Pharmacol. 2008;153(8):1706–17. https://doi.org/10.1038/bjp.2008.40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Xing F, Qu S, Liu J, Yang J, Hu F, Drevenšek-Olenik I, et al. Intercellular bridge mediates Ca2+ signals between micropatterned cells via IP3 and Ca2+ diffusion. Biophys J. 2020;118(5):1196–204. https://doi.org/10.1016/j.bpj.2020.01.006.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Ong JY, Bradley MC, Torres JZ. Phospho-regulation of mitotic spindle assembly. Cytoskeleton (Hoboken). 2020;77(12):558–78. https://doi.org/10.1002/cm.21649.

    Article  PubMed  CAS  Google Scholar 

  132. Kamranvar SA, Rani B, Johansson S. Cell cycle regulation by integrin-mediated adhesion. Cells. 2022;11(16):2521. https://doi.org/10.3390/cells11162521.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Alhammad R. Bioinformatics identification of TUBB as potential prognostic biomarker for worse prognosis in ERα-positive and better prognosis in ERα-negative breast cancer. Diagnostics (Basel). 2022;12(9):2067. https://doi.org/10.3390/diagnostics12092067.

    Article  PubMed  CAS  Google Scholar 

  134. Zhao Z, Liu Y, He H, Chen X, Chen J, Lu YC. Candidate genes influencing sensitivity and resistance of human glioblastoma to semustine. Brain Res Bull. 2011;86(3-4):189–94. https://doi.org/10.1016/j.brainresbull.2011.07.010.

    Article  PubMed  CAS  Google Scholar 

  135. Cronier L, Crespin S, Strale PO, Defamie N, Mesnil M. Gap junctions and cancer: new functions for an old story. Antioxid Redox Signal. 2009;11(2):323–38. https://doi.org/10.1089/ars.2008.2153.

    Article  PubMed  CAS  Google Scholar 

  136. Kotini M, Mayor R. Connexins in migration during development and cancer. Dev Biol. 2015;401(1):143–51. https://doi.org/10.1016/j.ydbio.2014.12.023.

    Article  PubMed  CAS  Google Scholar 

  137. Maheswari U, Sadras SR. Mechanism and regulation of autophagy in cancer. Crit Rev Oncog. 2018;23(5-6):269–80. https://doi.org/10.1615/CritRevOncog.2018028394.

    Article  PubMed  Google Scholar 

  138. Hou P, Wang X, Wang H, Wang T, Yu Z, Xu C, et al. The ORF7a protein of SARS-CoV-2 initiates autophagy and limits autophagosome-lysosome fusion via degradation of SNAP29 to promote virus replication. Autophagy. 2023;19(2):551–69. https://doi.org/10.1080/15548627.2022.2084686.

    Article  PubMed  CAS  Google Scholar 

  139. Huang J, Canadien V, Lam GY, Steinberg BE, Dinauer MC, Magalhaes MA, et al. Activation of antibacterial autophagy by NADPH oxidases. Proc Natl Acad Sci USA. 2009;106(15):6226–31. https://doi.org/10.1073/pnas.0811045106.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Park WB, Kim S, Shim S, Yoo HS. Identification of dendritic cell maturation, TLR, and TREM1 signaling pathways in the brucella canis infected canine macrophage cells, DH82, through transcriptomic analysis. Front Vet Sci. 2021;8:619759. https://doi.org/10.3389/fvets.2021.619759.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Jarrous N, Rouvinski A. RNA polymerase III and antiviral innate immune response. Transcription. 2021;12(1):1–11. https://doi.org/10.1080/21541264.2021.1890915.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Gain C, Song S, Angtuaco T, Satta S, Kelesidis T. The role of oxidative stress in the pathogenesis of infections with coronaviruses. Front Microbiol. 2023;13:1111930. https://doi.org/10.3389/fmicb.2022.1111930.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Lee NP, Mruk DD, Wong CH, Cheng CY. Regulation of Sertoli-germ cell adherens junction dynamics in the testis via the nitric oxide synthase (NOS)/cGMP/protein kinase G (PRKG)/beta-catenin (CATNB) signaling pathway: an in vitro and in vivo study. Biol Reprod. 2005;73(3):458–71. https://doi.org/10.1095/biolreprod.105.040766.

    Article  PubMed  CAS  Google Scholar 

  144. Lee NP, Cheng CY. Regulation of Sertoli cell tight junction dynamics in the rat testis via the nitric oxide synthase/soluble guanylate cyclase/3',5'-cyclic guanosine monophosphate/protein kinase G signaling pathway: an in vitro study. Endocrinology. 2003;144(7):3114–29. https://doi.org/10.1210/en.2002-0167.

    Article  PubMed  CAS  Google Scholar 

  145. Terzi A, Suter DM. The role of NADPH oxidases in neuronal development. Free Radic Biol Med. 2020;154:33–47. https://doi.org/10.1016/j.freeradbiomed.2020.04.027.

    Article  PubMed  CAS  Google Scholar 

  146. Peng Z, Wang Y, Fan J, Lin X, Liu C, Xu Y, et al. Costunolide and dehydrocostuslactone combination treatment inhibit breast cancer by inducing cell cycle arrest and apoptosis through c-Myc/p53 and AKT/14-3-3 pathway. Sci Rep. 2017;7:41254. https://doi.org/10.1038/srep41254.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Cao L, Cao W, Zhang W, Lin H, Yang X, Zhen H, et al. Identification of 14-3-3 protein isoforms in human astrocytoma by immunohistochemistry. Neurosci Lett. 2008;432(2):94–9. https://doi.org/10.1016/j.neulet.2007.11.071.

    Article  PubMed  CAS  Google Scholar 

  148. Gong F, Wang G, Ye J, Li T, Bai H, Wang W. 14-3-3β regulates the proliferation of glioma cells through the GSK3β/β-catenin signaling pathway. Oncol Rep. 2013;30(6):2976–82. https://doi.org/10.3892/or.2013.2740.

    Article  PubMed  CAS  Google Scholar 

  149. Marie SK, Oba-Shinjo SM, da Silva R, Gimenez M, Nunes Reis G, Tassan JP, Rosa JC, Uno M. Stathmin involvement in the maternal embryonic leucine zipper kinase pathway in glioblastoma. Proteome Sci. 2016;14:6. https://doi.org/10.1186/s12953-016-0094-9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Wen XM, Luo T, Jiang Y, Wang LH, Luo Y, Chen Q, Yang K, Yuan Y, Luo C, Zhang X, Yan ZX, Fu WJ, Tan YH, Niu Q, Xiao JF, Chen L, Wang J, Huang JF, Cui YH, et al. Zyxin (ZYX) promotes invasion and acts as a biomarker for aggressive phenotypes of human glioblastoma multiforme. Lab Investig. 2020;100(6):812–23. https://doi.org/10.1038/s41374-019-0368-9.

    Article  PubMed  CAS  Google Scholar 

  151. Zhan X, Desiderio DM. Nitroproteins from a human pituitary adenoma tissue discovered with a nitrotyrosine affinity column and tandem mass spectrometry. Anal Biochem. 2006;354(2):279–89. https://doi.org/10.1016/j.ab.2006.05.024.

    Article  PubMed  CAS  Google Scholar 

  152. Whiteman M, Armstrong JS, Chu SH, Jia-Ling S, Wong BS, Cheung NS, et al. The novel neuromodulator hydrogen sulfide: an endogenous peroxynitrite 'scavenger'? J Neurochem. 2004;90(3):765–8. https://doi.org/10.1111/j.1471-4159.2004.02617.x.

    Article  PubMed  CAS  Google Scholar 

  153. Saeki M, Maeda S. p130cas is a cellular target protein for tyrosine nitration induced by peroxynitrite. Neurosci Res. 1999;33(4):325–8. https://doi.org/10.1016/s0168-0102(99)00019-x.

    Article  PubMed  CAS  Google Scholar 

  154. Esteban FJ, Horcajadas A, El-Rubaidi O, Luque-Barona R, Ibáñez G, García-Carriazo A, et al. El monóxido de nitrógeno en los astrocitomas malignos [Nitric oxide in malignant astrocytes]. Rev Neurol. 2005;40(7):437–40.

    PubMed  CAS  Google Scholar 

  155. Resende FFB, Titze-de-Almeida SS, Titze-de-Almeida R. Function of neuronal nitric oxide synthase enzyme in temozolomide-induced damage of astrocytic tumor cells. Oncol Lett. 2018;15(4):4891–9. https://doi.org/10.3892/ol.2018.7917.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Gage MC, Thippeswamy T. Inhibitors of Src family kinases, inducible nitric oxide synthase, and NADPH oxidase as potential CNS drug targets for neurological diseases. CNS Drugs. 2021;35(1):1–20. https://doi.org/10.1007/s40263-020-00787-5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Swaroop GR, Kelly PA, Bell HS, Shinoda J, Yamaguchi S, Whittle IR. The effects of chronic nitric oxide synthase suppression on glioma pathophysiology. Br J Neurosurg. 2000;14(6):543–8. https://doi.org/10.1080/02688690020005554.

    Article  PubMed  CAS  Google Scholar 

  158. Wan J, Csaszar E, Chen WQ, Li K, Lubec G. Proteins from Avastin® (bevacizumab) show tyrosine nitrations for which the consequences are completely unclear. PLoS One. 2012;7(4):e34511. https://doi.org/10.1371/journal.pone.0034511.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Tangpong J, Cole MP, Sultana R, Estus S, Vore M, St Clair W, et al. Adriamycin-mediated nitration of manganese superoxide dismutase in the central nervous system: insight into the mechanism of chemobrain. J Neurochem. 2007;100(1):191–201. https://doi.org/10.1111/j.1471-4159.2006.04179.x.

    Article  PubMed  CAS  Google Scholar 

  160. Rattan R, Giri S, Singh AK, Singh I. Rho A negatively regulates cytokine-mediated inducible nitric oxide synthase expression in brain-derived transformed cell lines: negative regulation of IKKalpha. Free Radic Biol Med. 2003;35(9):1037–50. https://doi.org/10.1016/s0891-5849(03)00459-3.

    Article  PubMed  CAS  Google Scholar 

  161. Shinoda J, McLaughlin KE, Bell HS, Swaroop GR, Yamaguchi S, Holmes MC, et al. Molecular mechanisms underlying dexamethasone inhibition of iNOS expression and activity in C6 glioma cells. Glia. 2003;42(1):68–76. https://doi.org/10.1002/glia.10200.

    Article  PubMed  Google Scholar 

  162. Kanesaki T, Saeki M, Ooi Y, Suematsu M, Matsumoto K, Sakuda M, et al. Morphine prevents peroxynitrite-induced death of human neuroblastoma SH-SY5Y cells through a direct scavenging action. Eur J Pharmacol. 1999;372(3):319–24. https://doi.org/10.1016/s0014-2999(99)00206-x.

    Article  PubMed  CAS  Google Scholar 

  163. Förstermann U, Sessa WC. Nitric oxide synthases: regulation and function. Eur Heart J. 2012;33(7):829–37, 837a-837d. https://doi.org/10.1093/eurheartj/ehr304.

    Article  PubMed  CAS  Google Scholar 

  164. Azizi G, Goudarzvand M, Afraei S, Sedaghat R, Mirshafiey A. Therapeutic effects of dasatinib in mouse model of multiple sclerosis. Immunopharmacol Immunotoxicol. 2015;37(3):287–94. https://doi.org/10.3109/08923973.2015.1028074.

    Article  PubMed  CAS  Google Scholar 

  165. Ren Z, Gu X, Lu B, Chen Y, Chen G, Feng J, et al. Anticancer efficacy of a nitric oxide-modified derivative of bifendate against multidrug-resistant cancer cells. J Cell Mol Med. 2016;20(6):1095–105. https://doi.org/10.1111/jcmm.12796.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Williams JL, Ji P, Ouyang N, Kopelovich L, Rigas B. Protein nitration and nitrosylation by NO-donating aspirin in colon cancer cells: relevance to its mechanism of action. Exp Cell Res. 2011;317(10):1359–67. https://doi.org/10.1016/j.yexcr.2011.03.001.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  167. Xue L, Zeng Y, Fang C, Cheng W, Li Y. Effect of TTLL12 on tubulin tyrosine nitration as a novel target for screening anticancer drugs in vitro. Oncol Lett. 2020;20(6):340. https://doi.org/10.3892/ol.2020.12203.

    Article  PubMed  PubMed Central  Google Scholar 

  168. Nazarewicz RR, Zenebe WJ, Parihar A, Larson SK, Alidema E, Choi J, et al. Tamoxifen induces oxidative stress and mitochondrial apoptosis via stimulating mitochondrial nitric oxide synthase. Cancer Res. 2007;67(3):1282–90. https://doi.org/10.1158/0008-5472.can-06-3099.

    Article  PubMed  CAS  Google Scholar 

  169. Parihar A, Parihar MS, Ghafourifar P. Significance of mitochondrial calcium and nitric oxide for apoptosis of human breast cancer cells induced by tamoxifen and etoposide. Int J Mol Med. 2008;21(3):317–24.

    PubMed  CAS  Google Scholar 

  170. Chavarría C, Perez DI, Pérez C, Morales Garcia JA, Alonso-Gil S, Pérez-Castillo A, et al. Microwave-assisted synthesis of hydroxyphenyl nitrones with protective action against oxidative stress. Eur J Med Chem. 2012;58:44–9. https://doi.org/10.1016/j.ejmech.2012.09.044.

    Article  PubMed  CAS  Google Scholar 

  171. Nagaraj S, Gupta K, Pisarev V, Kinarsky L, Sherman S, Kang L, et al. Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer. Nat Med. 2007;13(7):828–35. https://doi.org/10.1038/nm1609.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Hardy LL, Wick DA, Webb JR. Conversion of tyrosine to the inflammation-associated analog 3'-nitrotyrosine at either TCR- or MHC-contact positions can profoundly affect recognition of the MHC class I-restricted epitope of lymphocytic choriomeningitis virus glycoprotein 33 by CD8 T cells. J Immunol. 2008;180(9):5956–62. https://doi.org/10.4049/jimmunol.180.9.5956.

    Article  PubMed  CAS  Google Scholar 

  173. Atukeren P, Kemerdere R, Kacira T, Hanimoglu H, Ozlen F, Yavuz B, et al. Expressions of some vital molecules: glioblastoma multiforme versus normal tissues. Neurol Res. 2010;32(5):492–501. https://doi.org/10.1179/174313209X459075.

    Article  PubMed  CAS  Google Scholar 

  174. Mihm MJ, Bauer JA. Peroxynitrite-induced inhibition and nitration of cardiac myofibrillar creatine kinase. Biochimie. 2002;84(10):1013–9. https://doi.org/10.1016/s0300-9084(02)00005-6.

    Article  PubMed  CAS  Google Scholar 

  175. Kummer MP, Hermes M, Delekarte A, Hammerschmidt T, Kumar S, Terwel D, et al. Nitration of tyrosine 10 critically enhances amyloid β aggregation and plaque formation. Neuron. 2011;71(5):833–44. https://doi.org/10.1016/j.neuron.2011.07.001.

    Article  PubMed  CAS  Google Scholar 

  176. Kim J. Spermidine is protective against kidney ischemia and reperfusion injury through inhibiting DNA nitration and PARP1 activation. Anat Cell Biol. 2017;50(3):200–6. https://doi.org/10.5115/acb.2017.50.3.200.

    Article  PubMed  PubMed Central  Google Scholar 

  177. Silva Servato JP, Ueira Vieira C, de Faria PR, Cardoso SV, Loyola AM. The importance of inducible nitric oxide synthase and nitrotyrosine as prognostic markers for oral squamous cell carcinoma. J Oral Pathol Med. 2019;48(10):967–75. https://doi.org/10.1111/jop.12942.

    Article  PubMed  CAS  Google Scholar 

  178. Wang J, Gao L, Lee YM, Kalesh KA, Ong YS, Lim J, et al. Target identification of natural and traditional medicines with quantitative chemical proteomics approaches. Pharmacol Ther. 2016;162:10–22. https://doi.org/10.1016/j.pharmthera.2016.01.010.

    Article  PubMed  CAS  Google Scholar 

  179. Zhan X, Wang X, Desiderio DM. Mass spectrometry analysis of nitrotyrosine-containing proteins. Mass Spectrom Rev. 2015;34(4):423–48. https://doi.org/10.1002/mas.21413.

    Article  PubMed  CAS  Google Scholar 

  180. Zhan X, Li J, Guo Y, Golubnitschaja O. Mass spectrometry analysis of human tear fluid biomarkers specific for ocular and systemic diseases in the context of 3P medicine. EPMA J. 2021;12(4):449–75. https://doi.org/10.1007/s13167-021-00265-y.

    Article  PubMed  PubMed Central  Google Scholar 

  181. Kubatka P, Mazurakova A, Samec M, Koklesova L, Zhai K, Al-Ishaq R, Kajo K, Biringer K, Vybohova D, Brockmueller A, Pec M, Shakibaei M, Giordano FA, Büsselberg D, Golubnitschaja O. Flavonoids against non-physiologic inflammation attributed to cancer initiation, development, and progression-3PM pathways. EPMA J. 2021;12(4):559–87. https://doi.org/10.1007/s13167-021-00257-y.

    Article  PubMed  PubMed Central  Google Scholar 

  182. Crigna AT, Link B, Samec M, Giordano FA, Kubatka P, Golubnitschaja O. Endothelin-1 axes in the framework of predictive, preventive and personalised (3P) medicine. EPMA J. 2021;12(3):265–305. https://doi.org/10.1007/s13167-021-00248-z.

    Article  Google Scholar 

  183. Koklesova L, Mazurakova L, Samec M, Kudela E, Biringer K, Kubatka P, Golubnitschaja O. Mitochondrial health quality control: measurements and interpretation in the framework of predictive, preventive, and personalized medicine. EPMA J. 2022;13(2):177–93. https://doi.org/10.1007/s13167-022-00281-6.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Code availability

Not applicable.

Funding

This work was supported by the Shandong Provincial Taishan Scholar Engineering Project Special Funds (to X.Z.), the Shandong Provincial Natural Science Foundation (ZR2021MH156; ZR2022QH112), the Shandong First Medical University Talent Introduction Funds (to X.Z.), the Shandong First Medical University High-level Scientific Research Achievement Cultivation Funding Program (to X.Z.), China National Nature Scientific Funds (81272798 to X.Z.; 82203592 to N.L.).

Author information

Authors and Affiliations

Authors

Contributions

W.J. collected and analyzed literature, and wrote the manuscript. X.G., Z.Y., and N.L. participated in the data analysis. X.Z. conceived the concept, designed the manuscript, coordinated, wrote and critically revised manuscript, and was responsible for its financial supports and the corresponding works. All authors approved the final manuscript.

Corresponding author

Correspondence to Xianquan Zhan.

Ethics declarations

Ethical approval

Not applicable.

Consent for publication

Not applicable.

Consent to participate

Not applicable.

Competing interests

The authors declare competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(XLSX 18 kb)

ESM 2

(PPTX 7479 kb)

ESM 3

(XLSX 9 kb)

ESM 4

(XLSX 15 kb)

ESM 5

(XLS 34 kb)

ESM 6

(PPTX 131 kb)

ESM 7

(PPTX 9939 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, W., Gong, X., Ye, Z. et al. Nitroproteomics is instrumental for stratification and targeted treatments of astrocytoma patients: expert recommendations for advanced 3PM approach with improved individual outcomes. EPMA Journal 14, 673–696 (2023). https://doi.org/10.1007/s13167-023-00348-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13167-023-00348-y

Keywords

Navigation