Skip to main content
Log in

Evaluate dry deposition velocity of the nitrogen oxides using Noah-MP physics ensemble simulations for the Dinghushan Forest, Southern China

  • Published:
Asia-Pacific Journal of Atmospheric Sciences Aims and scope Submit manuscript

Abstract

There has been a rapid growth of reactive nitrogen (Nr) deposition over the world in the past decades. The Pearl River Delta region is one of the areas with high loading of nitrogen deposition. But there are still large uncertainties in the study of dry deposition because of its complex processes of physical chemistry and vegetation physiology. At present, the forest canopy parameterization scheme used in WRF-Chem model is a single-layer “big leaf” model, and the simulation of radiation transmission and energy balance in forest canopy is not detailed and accurate. Noah-MP land surface model (Noah-MP) is based on the Noah land surface model (Noah LSM) and has multiple parametric options to simulate the energy, momentum, and material interactions of the vegetation-soil-atmosphere system. Therefore, to investigate the improvement of the simulation results of WRF-Chem on the nitrogen deposition in forest area after coupled with Noah-MP model and to reduce the influence of meteorological simulation biases on the dry deposition velocity simulation, a dry deposition single-point model coupled by Noah- MP and the WRF-Chem dry deposition module (WDDM) was used to simulate the deposition velocity (Vd). The model was driven by the micro-meteorological observation of the Dinghushan Forest Ecosystem Location Station. And a series of numerical experiments were carried out to identify the key processes influencing the calculation of dry deposition velocity, and the effects of various surface physical and plant physiological processes on dry deposition were discussed. The model captured the observed Vd well, but still underestimated the Vd. The self-defect of Wesely scheme applied by WDDM, and the inaccuracy of built-in parameters in WDDM and input data for Noah-MP (e.g. LAI) were the key factors that cause the underestimation of Vd. Therefore, future work is needed to improve model mechanisms and parameterization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ameur-Bouddabbous, I., J. Kasperek, A. Barbier, F. Harel, and B. Hannoyer, 2012: Transverse approach between real world concentrations of SO2, NO2, BTEX, aldehyde emissions and corrosion in the Grand Mare tunnel. J. Environ. Sci., 24, 1240–1250, doi:10.1016/S1001-0742(11)60936-4.

    Article  Google Scholar 

  • Aubinet, M., and Coauthors, 2000: Estimates of the annual net carbon and water exchange of forests: The euroflux methodology. Adv. Ecol. Res., 30, 113–175, doi:10.1016/S0065-2504(08)60018-5.

    Article  Google Scholar 

  • Ball, J. T., I. E. Woodrow, and J. A. Berry, 1987: A Model Predicting Stomatal Conductance and its Contribution to the Control of Photosynthesis under Different Environmental Conditions. In Progress in Photosynthesis Research: Volume 4 Proceedings of the VIIth International Congress on Photosynthesis Providence, J. Biggins Ed., Springer, 221–224, doi:10.1007/978-94-017-0519-6.

    Chapter  Google Scholar 

  • Berry, J. A., and J. K. Raison, 1981: Responses of macrophytes to temperature. In Physiological Plant Ecology I, O. L. Lange et al. Eds., Springer Berlin Heidelberg, 277–338.

    Chapter  Google Scholar 

  • Bi, X., and Coauthors, 2007: Seasonal and diurnal variations in moisture, heat, and CO2 fluxes over grassland in the tropical monsoon region of southern China. J. Geophys. Res., 112, 185–194, doi:10.1029/2006-JD007889.

    Article  Google Scholar 

  • Brix, H., 1962: The effect of water stress on the rates of photosynthesis and respiration in tomato plants and loblolly pine seedlings. Physiol. Plantarum, 15, 10–20.

    Article  Google Scholar 

  • Byun, D., and K. L. Schere, 2006: Review of the governing equations, computational algorithms, and other components of the models-3 community multiscale air quality (CMAQ) modeling system. Appl. Mech. Rev., 59, 51–77, doi:10.1115/1.2128636.

    Article  Google Scholar 

  • Canfield, D. E., A. N. Glazer, and P. G. Falkowski, 2010: The evolution and future of Earth's nitrogen cycle. Science, 330, 192–196, doi:10.1126/science.1186120.

    Article  Google Scholar 

  • Chen, L., S. Peng, J. Liu, and Q. Hou, 2012: Dry deposition velocity of total suspended particles and meteorological influence in four locations in Guangzhou, China. J. Environ. Sci., 24, 632–639, doi:10.1016/S1001-0742(11)60805-X.

    Article  Google Scholar 

  • Chen, F., and Coauthors, 2014: Modeling seasonal snowpack evolution in the complex terrain and forested Colorado Headwaters region: A model intercomparison study. J. Geophys. Res., 119, 13795–13819, doi:10.1002/2014JD022167.

    Google Scholar 

  • Collatz, G. J., J. T. Ball, C. Grivet, and J. A. Berry, 1991: Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: a model that includes a laminar boundary layer. Agric. Forest Meteor., 54, 107–136.

    Article  Google Scholar 

  • Cui, J., J. Zhou, and H. Yang, 2010: Atmospheric inorganic nitrogen in dry deposition to a typical red soil agro-ecosystem in southeastern China. J. Environ. Monitor., 12, 1287–1294, doi:10.1039/b922042a.

    Article  Google Scholar 

  • Deng, J., T. J. Wang, S. Li, M. Xie, and J. L. Fan, 2009: Study on atmospheric nitrogen oxidant and deposition flux in suburban of Nanjing. Sci. Meteorol. Sin., 29, 25–30.

    Google Scholar 

  • Dickinson, R. E., M. Shaikh, R. Bryant, and L. Graumlich, 1998: Interactive canopies for a climate model. J. Climate, 11, 2823–2836, doi:10.1175/1520-0442(1998)011<2823:ICFACM>2.0.CO;2.

    Article  Google Scholar 

  • Du, E., W. de Vries, J. N. Galloway, X. Hu, and J. Fang, 2014: Changes in wet nitrogen deposition in the united states between 1985 and 2012. Environ. Res. Lett., 9, 095004, doi:10.1088/1748-9326/9/9/095004.

    Article  Google Scholar 

  • Erisman, J. W., and G. Draaijers, 2003: Deposition to forests in Europe: Most important factors influencing dry deposition and models used for generalization. Environ. Pollut., 124, 379–388, doi:10.1016/S0269-7491(03)00049-6.

    Article  Google Scholar 

  • Fan, J.-L., Z.-Y. Hu, T. Wang, and J. Zhou, 2009: Dynamics of dry deposition velocities of atmospheric nitrogen compounds in a broadleaf forestland. China Environ. Sci., 29, 574–577.

    Google Scholar 

  • Galloway, J. N., and E. B. Cowling, 2002: Reactive nitrogen and the world: 200 years of change. AMBIO, 31, 64–71, doi:10.1579/0044-7447-31.2.64.

    Article  Google Scholar 

  • Gao, Z., G. T.-J. Chen, and Y. Hu, 2007: Impact of soil vertical water movement on the energy balance of different land surfaces. Int. J. Biometeorol., 51, 565–573, doi:10.1007/s00484-007-0095-6.

    Article  Google Scholar 

  • Gao, Y., K. Li, F. Chen, Y. Jiang, and C. Lu, 2015: Assessing and improving Noah-MP land model simulations for the central Tibetan Plateau. J. Geophys Res., 120, 9258–9278, doi:10.1002/2015JD023404.

    Google Scholar 

  • Gruber, N., and J. N. Galloway, 2008: An Earth-system perspective of the global nitrogen cycle. Nature, 451, 293–296, doi:10.1038/nature06592.

    Article  Google Scholar 

  • Guo, W., S. Sun, and Y. Qian, 2002: Case analyses and numerical simulation of soil thermal impacts on land surface energy budget based on an off-line land surface model. Adv. Atmos. Sci., 19, 500–512, doi:10.1007/s00376-002-0082-0.

    Article  Google Scholar 

  • Han, K. M., and C. H. Song, 2012: A budget analysis of NOx column losses over the Korean peninsula. Asia-Pac. J. Atmos. Sci., 48, 55–65, doi:10.1007/s13143-012-0006-6.

    Article  Google Scholar 

  • Hole, L. R., S. H. Brunner, J. E. Hanssen, and L. Zhang, 2008: Low cost measurements of nitrogen and sulphur dry deposition velocities at a semi-alpine site: Gradient measurements and a comparison with deposition model estimates. Environ. Pollut., 154, 473–481, doi:10. 1016/j.envpol.2007.06.061.

    Article  Google Scholar 

  • Horii, C. V., J. W. Munger, S. C. Wofsy, M. Zahniser, D. Nelson, and J. B. McManus, 2006: Atmospheric reactive nitrogen concentration and flux budgets at a Northeastern U.S. forest site. Agric. Forest Meteorol., 133, 210–225, doi:10.1016/j.agrformet.2006.03.005.

    Article  Google Scholar 

  • Horton, R., K. L. Bristow, G. J. Kluitenberg, and T. J. Sauer, 1996: Crop residue effects on surface radiation and energy balance -review. Theor. Appl. Climatol., 54, 27–37, doi:10.1007/BF00863556.

    Article  Google Scholar 

  • Jarvis, P. G., 1976: The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Philos. Trans. Roy. Soc. London, 273, 593–610.

    Article  Google Scholar 

  • Kong, G.-H., Z.-L. Huang, Q.-M. Zhang, S.-Z. Liu, J.-M. Mo, and D. Q. He, 1996: Type, structure, dynamics and management of the lower subtropical evergreen broad-leaved forest in the Dinghushan Biosphere Reserve of China. Tropics, 6, 335–350, doi:10.3759/tropics.6.335.

    Article  Google Scholar 

  • Kumar, A., F. Chen, M. Barlage, M. B. Ek, and D. Niyogi, 2014: Assessing impacts of integrating modis vegetation data in the weather research and forecasting (WRF) model coupled to two different canopyresistance approaches. J. Appl. Meteor. Climatol., 53, 1362–1380, doi:10.1175/JAMC-D-13-0247.1.

    Article  Google Scholar 

  • Lee, X., 1998: On micrometeorological observations of surface-air exchange over tall vegetation. Agric. Forest Meteor., 91, 39–49, doi:10.1016/ S0168-1923(98)00071-9.

    Article  Google Scholar 

  • Li, Y.-X., Y.-S. Lou, and F.-C. Zhang, 2011: Comparison of stomatal conductance models for winter wheat. Chinese J. Agrometeorol., 32, 106–110, doi:10.3969/.jissn,1000-6362.2011.01.019 (in Chinese with English Abstract).

    Google Scholar 

  • Li, Z., G. Yu, X. Wen, L. Zhang, C. Ren, and Y. Fu, 2005: Energy balance closure at ChinaFLUX sites. Sci. China Ser. D., 48, 51–62, doi:10.1360/05zd0005 (in Chinese with English Abstract).

    Google Scholar 

  • Liu, H.-B., J.-J. Feng, and H.-M. Wang, 2005: The characteristic of the reverse temperature about low air in Jinan. J. Shandong. Meteor., 25, 27–28 (in Chinese with English Abstract).

    Google Scholar 

  • Liu, X., and Coauthor, 2013: Enhanced nitrogen deposition over China. Nature, 494, 459–462, doi:10.1038/nature11917.

    Article  Google Scholar 

  • Liu, Y. W., Xu-Ri, Y. S. Wang, Y. P. Pan, and S. L. Piao, 2015: Wet deposition of atmospheric inorganic nitrogen at five remote sites in the Tibetan plateau. Atmos. Chem. Phys., 15, 11683–11700, doi:10.5194/acp-15-11683-2015.

    Article  Google Scholar 

  • Lü, C., and H. Tian, 2007: Spatial and temporal patterns of nitrogen deposition in China: Synthesis of observational data. J. Geophys. Res., 112, 229–238, doi:10.1029/2006JD007990.

    Article  Google Scholar 

  • Mcrae, G. J., W. R. Goodin, and J. H. Seinfeld, 1982: Mathematical Modeling of Photochemical Air Pollution. EQL Report No. 18, 661 pp.

    Google Scholar 

  • Niu, G.-Y., and Z.-L. Yang, 2004: Effects of vegetation canopy processes on snow surface energy and mass balances. J. Geophys. Res., 109, 2543–2552, doi:10.1029/2004JD004884.

    Article  Google Scholar 

  • Niu, G.-Y., Z.-L. Yang, R. E. Dickinson, and L. E. Gulden, 2005: A simple TOPMODEL-based runoff parameterization (SIMTOP) for use in global climate models. J. Geophys. Res., 110, 3003–3013, doi:10.1029/ 2005JD006111.

    Article  Google Scholar 

  • Niu, G.-Y., Z.-L. Yang, R. E. Dickinson, L. E. Gulden, and H. Su, 2007: Development of a simple groundwater model for use in climate models and evaluation with Gravity Recovery and Climate Experiment data. J. Geophys. Res., 112, 277–287, doi:10.1029/2006JD007522.

    Google Scholar 

  • Niu, G.-Y., and Coauthors, 2011: The community Noah land surface model with multi-parameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res., 116, 1248–1256, doi:10.1029/2010JD015139.

    Google Scholar 

  • Niu, H. S., R. Xu, Z. C. Zhang, and Z. Z. Chen, 2005: A Jarvis stomatal conductance model under considering soil moisture condition. Chinese J. Ecol., 24, 1287–1290 (in Chinese with English Abstract).

    Google Scholar 

  • Pan, Y. P., Y. S. Wang, G. Q. Tang, and D. Wu, 2012: Wet and dry deposition of atmospheric nitrogen at ten sites in northern China. Atmos. Chem. Phys., 12, 6515–6535, doi:10.5194/acpd-12-753-2012.

    Article  Google Scholar 

  • Petroff, A., A. Mailliat, M. Amielh, and F. Anselmet, 2008: Aerosol dry deposition on vegetative canopies. Part 1: Review of present knowledge. Atmos. Environ., 42, 3625–3653, doi:10.1016/j.atmosenv.2007.09.043.

    Google Scholar 

  • Pilegaard, K., P. HummelshØj, and N. O. Jensen, 1998: Fluxes of ozone and nitrogen dioxide measured by eddy correlation over a harvested wheat field. Atmos. Environ., 32, 1167–1177, doi:10.1016/S1352-2310(97)00194-5.

    Article  Google Scholar 

  • Sharma, S. K., A. Datta, T. Saud, M. Saxena, T. K. Mandal, Y. N. Ahammed, and B. C. Arya, 2010: Seasonal variability of ambient NH3, NO, NO2 and SO2 over Delhi. J. Environ. Sci., 22, 1023–1028, doi:10.1016/S1001-0742(09)60213-8.

    Article  Google Scholar 

  • Shen, J. L., A. H. Tang, X. J. Liu, A. Fangmeier, K. T. W. Goulding, and F. S. Zhang, 2009: High concentrations and dry deposition of reactive nitrogen species at two sites in the North China Plain. J. Environ. Pollut., 157, 3106–3113, doi:10.1016/j.envpol.2009.05.016.

    Article  Google Scholar 

  • Shen, J., L. Zhong, S. Ye, D. Chen, M. Jiang, M. Xie, L. Wen, Y. Zhang, and D. Yue, 2015: Air pollution characteristics in dry and wet seasons in the Pearl River Delta. China Sci. paper, 10, 1748–1751 (in Chinese with English Abstract).

    Google Scholar 

  • Shi, J. H., Z. H. Huang, X. Y. Zhou, C. Zhang, X. J. Ouyang, and L. Li, 2006: The regeneration strategies and spatial pattern of woody species in the mixed coniferous and broadleaf forest in Dinghu mountains. J. Nanjing Forest. Univ., 30, 34–38 (in Chinese with English Abstract).

    Google Scholar 

  • Stevens, C. J., N. B. Dise, J. O. Mountford, and D. J. Gowing, 2004: Impact of nitrogen deposition on the species richness of grasslands. Science, 303, 1876–1879, doi:10.1126/science.1094678.

    Article  Google Scholar 

  • Sun, C. L., and S. D. Xie, 2014: Study on critical loads of sulfur and nitrogen in the Pearl River Delta. Chinese J. Environ. Sci., 35, 1250–1255 (in Chinese with English Abstract).

    Google Scholar 

  • Tang, X., G. Zhou, D. Wen, D. Zhang, and J. Yang, 2003: Distribution of carbon storage in a lower subtropical monsoon evergreen broad-leaved forest in Dinghushan Nature Reserve. Acta Ecol. Sin., 23, 90–99 (in Chinese with English Abstract).

    Google Scholar 

  • Tariq, S., H. Zia, and H. Ali, 2016: Satellite and ground-based remote sensing of aerosols during intense haze event of October 2013 over Lahore, Pakistan. Asia-Pac. J. Atmos. Sci., 52, 25–33, doi:10.1007/s13143-015-0084-3.

    Article  Google Scholar 

  • Taub, D. R., J. R. Seemann, and J. S. Coleman, 2000: Growth in elevated CO2, protects photosynthesis against high-temperature damage. Plant. Cell. Environ., 23, 649–656, doi:10.1046/j.1365-3040.2000.00574.x.

    Article  Google Scholar 

  • Turnipseed, A. A., and Coauthors, 2006: Eddy covariance fluxes of peroxyacetyl nitrates (PANs) and NOy to a coniferous forest. J. Geophys. Res., 111, 1485–1493, doi:10.1029/2005JD006631.

    Article  Google Scholar 

  • Vaittinen, O., M. Metsälä, S. Persijn, M. Vainio, and L. Halonen, 2014: Adsorption of ammonia on treated stainless steel and polymer surfaces. Appl. Phys., 115, 185–196, doi:10.1007/s00340-013-5590-3.

    Article  Google Scholar 

  • Wang, C.-L., G.-Y. Zhou, X. Wang, C.-Y. Zhou, and G.-R. Yu, 2007: Energy balance analysis of the coniferous and broad-leaved mixed forest ecosystem in Dinghushan. J. Trop. Meteorol., 23, 643–651 (in Chinese with English Abstract).

    Google Scholar 

  • Wang, X., S. Situ, W. Chen, J. Zheng, A. Guenther, Q. Fan, and M. Chang, 2016. Numerical model to quantify biogenic volatile organic compound emissions: The Pearl River Delta region as a case study. J. Environ. Sci., 46, 72–82, doi:10.1016/j.jes.2015.08.032.

    Article  Google Scholar 

  • Wesely, M. L., 1989: Parameterization of surface resistances to gaseous dry deposition in regional-scale numerical models. Atmos. Environ., 23, 1293–1304, doi:10.1016/0004-6981(89)90153-4.

    Article  Google Scholar 

  • Wesely, M. L., and B. B. Hicks, 2000: A review of the current status of knowledge on dry deposition. Atmos. Environ., 34, 2261–2282, doi:10. 1016/S1352-2310(99)00467-7.

    Article  Google Scholar 

  • Wu, Z., and Coauthors, 2011: Evaluating the calculated dry deposition velocities of reactive nitrogen oxides and ozone from two community models over a temperate deciduous forest. Atmos. Environ., 45, 2663–2674, doi:10.1016/j.atmosenv.2011.02.063.

    Article  Google Scholar 

  • Wu, Z. Y., L. Zhang, X. M. Wang, and J. W. Munger, 2015: A modified micrometeorological gradient method for estimating O3 dry deposition over a forest canopy. Atmos. Chem. Phys., 15, 7487–7496, doi:10.5194/ acp-15-7487-2015.

    Article  Google Scholar 

  • Yang, R., and M. A. Friedl, 2003: Modeling the effects of threedimensional vegetation structure on surface radiation and energy balance in boreal forests. J. Geophys. Res., 108, 1051–1062, doi:10.1029/2002JD003109.

    Article  Google Scholar 

  • Zhang, L., Y. Luo, G. Yu, and L. Zhang, 2010: Estimated carbon residence times in three forest ecosystems of eastern China: Applications of probabilistic inversion. J. Geophys. Res., 115, 137–147, doi:10.1029/2009JG001004.

    Article  Google Scholar 

  • Zhou, X.-Y., Z.-L. Huang, J.-H. Shi, X.-J. Ouyang, J. Li, and C. Zhang, 2004: Short-term dynamics of community composition and structure during succession of coniferous and broad-leaved mixed forest in Dinghushan. J. Trop. Subtrop. Bot., 12, 323–330 (in Chinese with English Abstract).

    Google Scholar 

  • Zuo, J.-Q., J.-M. Wang, J.-P. Huang, W.-J. Li, G.-Y. Wang, and H.-L. Ren, 2010: Estimation of ground heat flux for a semi-arid grassland and its impact on the surface energy budget. Plateau Meteor., 29, 840–848 (in Chinese with English Abstract).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ming Chang or Xuemei Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Chang, M., Zhou, S. et al. Evaluate dry deposition velocity of the nitrogen oxides using Noah-MP physics ensemble simulations for the Dinghushan Forest, Southern China. Asia-Pacific J Atmos Sci 53, 519–536 (2017). https://doi.org/10.1007/s13143-017-0055-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13143-017-0055-y

Keywords

Navigation