Skip to main content
Log in

Land Surface Processes Simulation Over Thar Desert in Northwest India

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Land surface processes in data scarce arid northwestern India and their influence on the regional climate including monsoon are now gaining enhanced scientific attention. In this work the seasonal variation of land surface parameters and surface-energy flux components over Lasiurus sindicus grassland system in Thar Desert, western India were simulated using the mesoscale WRF model. The data on surface fluxes from a micrometeorological station, and basic surface level weather data from the Central Arid Zone Research Institute’s experimental field station (26o59′41″N; 71o29′10″E), Jaisalmer, were used for comparison. Simulations were made for typical fair weather days in three seasons [12–14 January (peak winter); 29–31 May (peak summer), 19–21 August (monsoon)] during 2012. Sensitivity experiments conducted using a 5-layer soil thermal diffusion (5TD) scheme and a comprehensive land surface physics scheme (Noah) revealed the 5TD scheme gives large biases in surface fluxes and other land surface parameters. Simulations show large variations in surface fluxes and meteorological parameters in different seasons with high friction velocities, sensible heat fluxes, deep boundary layers in summer and monsoon season as compared to winter. The shortwave radiation is underestimated during the monsoon season, and is overestimated in winter and summer. In general, the model simulated a cold bias in soil temperature in summer and monsoon season and a warm bias in winter; the simulated surface fluxes and air temperature followed these trends. These biases could be due to a negative bias in net radiation resulting from a high bias in downward shortwave radiation in various seasons. The Noah LSM simulated various parameters more realistically in all seasons than the 5TD soil scheme due to inclusion of explicit vegetation processes in the former. The differences in the simulated fluxes with the two LSMs are small in winter and large in summer. The deep mixed layers are distributed in the northeastern parts in summer, northern areas in southwest monsoon and in southwestern parts during winter seasons and associated with the land-cover and vegetation dynamics. Our results present a baseline simulation study in this data scarce arid region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Arya, S. P. (2001), Introduction to micrometeorology. Academic Press, San Diego; 420 pp.

  • Avissar, R., Pielke R. A. (1989), A parameterization of heterogeneous land surfaces for atmospheric numerical models and its impact on regional meteorology. Mon. Weather Rev. 117, 2113–2136.

  • Baldocchi, D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running, S., Anthoni, P., Bernhofer, C., Davis, K., Evans, R., Fuentes, J., Goldstein, A., Katul, G., Law, B., Lee, X., Malhi, Y., Meyers, T., Munger, W., Oechel, W., Paw, K. T., Pilegaard, K., Schmid, H. P., Valentini, R., Verma, S., Vesala, T., Wilson, K., Wofsy, S. (2001), FLUXNET: a new tool to study the temporal and spatial variability of ecosystem–scale carbon dioxide, water vapor, and energy flux densities. Bull. Amer. Meteor. Soc. 82, 2415–2434.

  • Beljaars, A.C.M., Holtslag., A.A.M. (1991), Flux parametrization over land surfaces for atmospherics models. J. Appl. Meteorol. 30, 327–341.

  • Bhattacharya, B. K., Gunjal, K., Nanda, M., Panigrahy, S. (2009), Protocol development of energy-water flux computation from AMS and Model development. SAC/RESA/ARG/EMEVS/SR/02/2009, Chapter 3, pp. 34–53, Space Applications Centre, Ahmedabad.

  • Bhattacharya, B. K., Singh, N., Bera, N., Nanda, M. K., Bairagi, G. D., Raja, P., Bal, S. K., Murugan, V., Kandpal, B. K., Patel, B. H. Jain, A., Parihar J. S. (2013), Canopy-scale dynamics of radiation and energy balance over short vegetative systems. Scientific Report SAC/EPSA/ABHG/IGBP/EME-VS/SR/02/2013, pp.97, Space Applications Centre, Ahmedabad.

  • Bollasina, M., Nigam, S. (2011), Modeling of regional hydroclimate change over the Indian subcontinent: impact of the expanding Thar Desert. J. Climate, 24, 3089–3106.

  • Campbell, G. S., Norman, J. M. (1998), Introduction to environmental biophysics. Springer Science-Business Media Inc. New York, pp. 71.

  • Charney, J.G. (1975), Dynamics of deserts and drought in Sahel. Quart. J. R. Meteorol. Soc. 101, 193–202.

  • Chen, F., Dudhia, J. (2001), Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: model implementation and sensitivity. Mon. Weather Rev. 129, 569–585.

  • Chen, F., Pielke, R. Sr., Mitchell, K. (2001), Development and application of land-surface models for mesoscale atmospheric models: problems and promises. Observation and modeling of the land surface hydrological processes, in : Lakshmi, V., Alberston, J., Schaaake, J. (Eds.), American Geophysical Union. 107–135.

  • Csiszar, I., Gutman, G. (1999), Mapping global land surface albedo from NOAA AVHRR. J.Geophys. Res. 104, 6215–6228.

  • De Bruin, H.A.R., Ronda, R.J., Van, De., Weil, B.J.H. (2000), Approximate solution for the Obukhov length and surface fluxes in terms of bulk Richardson numbers. Bound.-Layer. Meteorol. 95, 145–157.

  • Dickinson, R.E., Henderson Sellers, A. (1988), Modelling tropical deforestation: a study of GCM land-surface parameterizations. Quart. J. R.. Meteorol. Soc. 114, pp. 439–462.

  • Dudhia, J. (1989), Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model, J. Atmos. Sci. 46, 3077–3107.

  • Dudhia, J. (1996), A multi‐layer soil temperature model for MM5. Preprints, The Sixth PSU/NCAR Mesoscale Model Users’ Workshop, 22–24 July 1996, Boulder, Colorado, 49–50.

  • Dyer, A.J. (1974), A review of flux-profile relationships. Bound.-Layer. Meteorol. 20, 35–49.

  • Dyer, A.J., Hicks, B.B. (1970), Flux-gradient relationships in the constant flux layer. Quart. J. R. Meteorol. Soc. 96, 715–721.

  • Frank, D.C., Esper, J., Raible, C.C., Buntgen, U., Trouet, V., Stocker, B., Joos, F. (2010), Ensemble reconstruction constraints on the global carbon cycle sensitivity to climate. Nature. 463, 527–530.

  • Goel, M., Srivastava, H.N., 1990. Monsoon Trough Boundary Layer Experiment (MONTBLEX). Bull. Amer. Meteor. Soc. 71, 1594–1600.

  • Goswami, P., Ramesh, K. V. (2008), The expanding Indian desert: assessment through weighted epochal trend ensemble. Curr. Sci., 94, 476–480.

  • Gutman, G., Ignatov, A. (1997), The derivation of green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models. Int. J. Remote Sens. 19, 1533–1543.

  • Hong, S.Y., Noh, Y., Dudhia, J. (2006), A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Weather. Rev. 134, 2318–2341.

  • Huizhi, L., and Jianwu, F. (2012), Seasonal and interannual variations of evapotranspiration and energy exchange over different land surfaces in a semiarid area of China. J. Appl. Meteor. Climatol., 51, 1875–1888.

  • Jimenez, P.A., Dudhia, J., Gonzalez–Rouco, F., Navarro, J., Montavez, J.P., Garcia–Bustamante, E. (2012), A revised scheme for the WRF surface layer formulation. Mon. Weather Rev. 140, 898–918.

  • Kabat, P., Claussen, M., Dirmeyer, P.A., Gash, J.H.C., de Guenni, L.B., Meybeck, M., Pielke, R.A Sr., Vörösmarty, C.J., Hutjes, R.W.A., Lütkemeier, S. (2004), Vegetation, water, humans and the climate: a new perspective on an interactive system. Global change: the IGBP Series, Vol. 24, Springer Verlag, 566 pp.

  • Kain, J.S., Fritsch, J.M. (1993), Convective parameterization for mesoscale models: the Kain-Fritsch scheme. In: Emanuel, K.A., Raymond, D.J. (Eds.), The representation of cumulus convection in numerical models. American Meteorological Society, Boston.

  • Kar, S.C., Mali, P., Routray, A. (2014), Impact of land surface processes on the South Asian monsoon simulations using WRF modeling system. Pure. Appl. Geophys. 171(9), 2461–2484. doi: 10.1007/s00024-014-0834-7.

  • Leuning, R., Gorsela, E.V., Massmanb, W.J., Isaacc, P.R. (2012). Reflections on the surface energy imbalance problem. Agric For Meteorol. 156, 65–74.

  • Livneh, B., Restrepo, P.J., Lettenmaier, D.P. 2011. Development of a UniÞed land model for prediction of surface hydrology and LandÐAtmosphere interactions. J. Hydrometeorol. 00, 1–22.

  • Miao, J.F., Wyser, K., Chen, D., Ritchie, H. (2009), Impacts of boundary layer turbulence and land surface process parameterizations on simulated sea breeze characteristics. Ann. Geophys. 27, 2303–2320.

  • Mlawer, E.J., Taubman, S.J., Brown, P.D., Iacono, M.J., Clough, S.A. (1997), Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. 102, 16663–16682.

  • Moran, M.S., Clarke, T.R., Kustas, W.P., Weltz, M., Amer, S.A. (1994), Evaluation of hydrologic parameters in a semi-arid rangeland using remotely sensed spectral data. Water Resour. Res. 30(5), 1287–1297.

  • Niyogi, D., Kishtawal, C., Tripathi, S., Govindaraju, R.S. (2010), Observational evidence that agricultural intensification and land use change may be reducing the Indian summer monsoon rainfall. Water Resour. Res., 46, W03533, doi:10.1029/2008WR007082.

  • Noh, Y., Cheon, W. G., Hong, S. Y., Raasch, S. (2003), Improvement of the K-profile model for the planetary boundary layer based on large eddy simulation data. Bound.-Layer Meteorol. 107, 401–427.

  • Paulson, C.A. (1970), The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. J. Appl. Meteorol. 9, 857–861.

  • Rahmani, A.R., Soni, R.G. (1997), Avifaunal changes in the Indian Thar Desert. J. Arid Environ. 36 (4), 687–703.

  • Raja, P., Bhattacharya, B K., Singh, N., Sinha, N.K., Singh, J.P., Pandey, C.B., Parihar, J.S. and Roy, M.M. (2013), Surface energy balance and its closure in arid grassland ecosystem: a case study over Thar Desert. J. Agrometeorol. spl.issue.Vol.1, pp.94–99.

  • Ravi, S., Huxman, T.E. (2009), Land degradation in the Thar Desert. Front. Ecol. Environ. 7, 517–518. http://dx.doi.org/10.1890/09.WB.029.

  • Sanjay, J. (2008), Assessment of atmospheric boundary-layer processes represented in the numerical model MM5 for a Clear Sky Day using LASPEX observations. Bound. -Layer Meteorol. 129, 159–177.

  • Shyampura, R.L., Singh, S.K., Singh, R.S., Jain, B.L., Gajbhiye, K.S. (2002), Soil Series of Rajasthan, NBSS & LUP publication. 95, pp.364. National Bureau of Soil Survey & Land Use Planning, Nagpur.

  • Sikka, D.R., Narasimha R. (1995), Genesis of the monsoon trough boundary layer experiment (MONTBLEX), Proceedings of Indian Academy of Science. 104, 157–187.

  • Skamarock, W.C., Klemp, J.B., Dudhia, J., Gill, D.O., Barker, D.M., Duda, M.G., Huang, X.Y., Wang, W., Powers, J.G. (2008), A description of the advanced research WRF Version 3. NCAR Technical Note, NCAR/TN-475 + STR. Mesoscale and Microscale Meteorology Division, National Center for Atmospheric Research, Boulder.

  • Srinivas, C.V., Rao, D.V.B., Hariprasad, D., Hari Prasad, K.B.R.R., Baskaran, R., Venkatraman, B. (2014), A study on the influence of the land surface processes on the Southwest Monsoon simulations using a regional climate model. Pure Appl. Geophys. doi: 10.1007/s00024-014-0905-9.

  • Stewart, J.B., Kustas, W.P., Humes, K.S., Nichols, W.D., Moran, M.S. De Bruin, H.A.R. (1994), Sensible heat flux-radiometric surface temperature relationship for 8 semi-arid areas. J. Appl. Meteorol. 33, 11 10–1 117.

  • Tewari, M., Chen, F., Wang, W., Dudhia, J., LeMone, M. A., Mitchell, K., Ek, M., Gayno, G., Wegiel, J., Cuenca, R. H. (2004), Implementation and verification of the unified NOAH land surface model in the WRF model. 20th conference on weather analysis and forecasting/16th conference on numerical weather prediction, pp. 11–15.

  • Unland, H.E., Houser, P.R., Shuttleworth, W.J., Yang, Z.L. (1996), Surface flux measurement and modeling at a semi-arid Sonoran Desert site. Agric. For. Meteorol. 82, 119–153.

  • USDA. (1994), Major world crop areas and climatic profiles. USDA Agricultural Handbook 664, 293 pp. [Available online at http://www.usda.gov/oce/weather/pubs/Other/MWCACP/world_crop_country.htm].

  • Vernekar, K.G., Sinha, S., Sadani, L.K., Sivaramakrishnan, S., Parasnis, S.S., Mohan, B., Dharmaraj, S., Patil, M.N., Pillai, J.S., Murthy, B.S., Debaje, S.B., Singh, A.B. (2003), An overview of the land surface processes experiment (Laspex) over a semi-arid region of India. Bound.-Layer Meteorol. 106, 561–572.

  • Wang, A., Barlage, M., Zeng, X., Draper, C.S. (2014), Comparison of land skin temperature from a land model, remote sensing, and in situ measurement, J. Geophys. Res. Atmos. 119, 3093–3106, doi:10.1002/2013JD021026.

  • Webb, E. K. (1970), Profile relationships: the log-linear range, and extension to strong stability. Quart. J. R. Meteorol. Soc. 96, 67–90.

  • Xu, Q., Qiu, C. J. (1997), A variational method for computing surface heat fluxes from ARM surface energy and radiation balance systems. J. Appl. Meteorol. 36, 4–11.

  • Yang, Z.-L. (2004) Modeling land surface processes in short term weather and climate studies, in Observation, Theory and Modeling of Atmospheric Variability, edited by X. Zhu, X. Li, M. Cai, S. Zhou, Y. Zhu, F.-F. Jin, X. Zou, and M. Zhang, World Scientific Series on Meteorology of East Asia, World Scientific, New Jersey, pp. 288–313.

  • Zeng, X., Wang, Z., Wang, A. (2012), Surface skin temperature and the interplay between sensible and ground heatfluxes over arid regions. J. Hydrometeorol. 13, 1359–1370.

  • Zhang, D.L., Anthes, R.A. (1982), A high-resolution model of the planetary boundary layer—sensitivity tests and comparisons with SESAME-79 data. J. Appl. Meteorol. 21, 1594–1609.

  • Zhang, Q., Huang, R.H., Wang, S., et al. (2005), NWC-ALIEX and its research advances, Adv. Earth Sci. (in Chinese), 20, 427–441.

  • Zhou, L.T., Wu, R.G., Huang, R.H. (2010), Variability of surface sensible heat flux over Northwest China. Atmos. Oceanic Sci. Lett. 3, 75–80.

Download references

Acknowledgments

The authors gratefully acknowledge Dr. B. Venkatraman (Division Head & Associate Director, RSEG/IGCAR) and Dr. R. Baskaran (Head, RIAS), IGCAR, Kalpakkam for providing all facilities to carry out numerical simulations at IGCAR. The micrometeorological observations used in the study are generated at Central Arid Zone Research Institute (CAZRI) under the project titled “Energy and Mass Exchange in Arid Grassland System” which forms a part of SAC national programme “Energy and Mass Exchange in Vegetative Systems (EME-VS)”. Authors are thankful to the Director, Space Applications Centre (ISRO) for funding this project and Director, ICAR-CAZRI for providing facilities to carry out this work. Authors thank the anonymous reviewers for their technical comments which improved the content of this manuscript. Authors also thank Director, Wadia Institute of Himalayan Geology for providing facilities for surface flux computation through different micrometeorological methods.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. V. Srinivas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raja, P., Srinivas, C.V., Hari Prasad, K.B.R.R. et al. Land Surface Processes Simulation Over Thar Desert in Northwest India. Pure Appl. Geophys. 173, 2195–2214 (2016). https://doi.org/10.1007/s00024-016-1246-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-016-1246-7

Keywords

Navigation