Skip to main content

Advertisement

Log in

A Key Mediator and Imaging Target in Alzheimer’s Disease: Unlocking the Role of Reactive Astrogliosis Through MAOB

  • Review
  • Published:
Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Astrocytes primarily maintain physiological brain homeostasis. However, under various pathological conditions, they can undergo morphological, transcriptomic, and functional transformations, collectively referred to as reactive astrogliosis. Recent studies have accumulated lines of evidence that reactive astrogliosis plays a crucial role in the pathology of Alzheimer’s disease (AD). In particular, monoamine oxidase B, a mitochondrial enzyme mainly expressed in astrocytes, significantly contributes to neuronal dysfunction and neurodegeneration in AD brains. Moreover, it has been reported that reactive astrogliosis precedes other pathological hallmarks such as amyloid-beta plaque deposition and tau tangle formation in AD. Due to the early onset and profound impact of reactive astrocytes on pathology, there have been extensive efforts in the past decade to visualize these cells in the brains of AD patients using positron emission tomography (PET) imaging. In this review, we summarize the recent studies regarding the essential pathological importance of reactive astrocytes in AD and their application as a target for PET imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Verkhratsky A, Nedergaard M. Physiology of Astroglia. Physiol Rev. 2018;98:239–389.

    Article  PubMed  CAS  Google Scholar 

  2. Escartin C, Galea E, Lakatos A, O’Callaghan JP, Petzold GC, Serrano-Pozo A, et al. Reactive astrocyte nomenclature, definitions, and future directions. Nat Neurosci. 2021;24:312–25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Sofroniew MV. Astrocyte reactivity: subtypes, states, and functions in CNS innate immunity. Trends Immunol. 2020;41:758–70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature. 2017;541:481–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Chun H, Lee CJ. Reactive astrocytes in Alzheimer’s disease: a double-edged sword. Neurosci Res. 2018;126:44–52.

    Article  PubMed  CAS  Google Scholar 

  6. Chun H, Im H, Kang YJ, Kim Y, Shin JH, Won W, et al. Severe reactive astrocytes precipitate pathological hallmarks of Alzheimer’s disease via H(2)O(2)(-) production. Nat Neurosci. 2020;23:1555–66.

    Article  PubMed  CAS  Google Scholar 

  7. Nam MH, Ko HY, Kim D, Lee S, Park YM, Hyeon SJ, et al. Visualizing reactive astrocyte-neuron interaction in Alzheimer’s disease using 11C-acetate and 18F-FDG. Brain. 2023;146:2957–74.

    Article  PubMed  Google Scholar 

  8. Jo S, Yarishkin O, Hwang YJ, Chun YE, Park M, Woo DH, et al. GABA from reactive astrocytes impairs memory in mouse models of Alzheimer’s disease. Nat Med. 2014;20:886–96.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Park JH, Ju YH, Choi JW, Song HJ, Jang BK, Woo J, et al. Newly developed reversible MAO-B inhibitor circumvents the shortcomings of irreversible inhibitors in Alzheimer’s disease. Sci Adv. 2019;5:eaav0316.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Heo JY, Nam MH, Yoon HH, Kim J, Hwang YJ, Won W, et al. Aberrant tonic inhibition of dopaminergic neuronal activity causes motor symptoms in animal models of Parkinson’s disease. Curr Biol. 2020;30(276–91): e9.

    Google Scholar 

  11. Tong J, Meyer JH, Furukawa Y, Boileau I, Chang LJ, Wilson AA, et al. Distribution of monoamine oxidase proteins in human brain: implications for brain imaging studies. J Cereb Blood Flow Metab. 2013;33:863–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Vitalis T, Fouquet C, Alvarez C, Seif I, Price D, Gaspar P, et al. Developmental expression of monoamine oxidases A and B in the central and peripheral nervous systems of the mouse. J Comp Neurol. 2002;442:331–47.

    Article  PubMed  CAS  Google Scholar 

  13. Levitt P, Pintar JE, Breakefield XO. Immunocytochemical demonstration of monoamine oxidase B in brain astrocytes and serotonergic neurons. Proc Natl Acad Sci U S A. 1982;79:6385–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Nam MH, Sa M, Ju YH, Park MG, Lee CJ. Revisiting the role of astrocytic MAOB in Parkinson’s disease. Int J Mol Sci. 2022;23(8):4453.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Cho HU, Kim S, Sim J, Yang S, An H, Nam MH, et al. Redefining differential roles of MAO-A in dopamine degradation and MAO-B in tonic GABA synthesis. Exp Mol Med. 2021;53:1148–58.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Ju YH, Bhalla M, Hyeon SJ, Oh JE, Yoo S, Chae U, et al. Astrocytic urea cycle detoxifies abeta-derived ammonia while impairing memory in Alzheimer’s disease. Cell Metab. 2022;34(1104–20): e8.

    Google Scholar 

  17. An H, Heo JY, Lee CJ, Nam MH. The pathological role of astrocytic MAOB in parkinsonism revealed by genetic ablation and over-expression of MAOB. Exp Neurobiol. 2021;30:113–9.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Nam MH, Park JH, Song HJ, Choi JW, Kim S, Jang BK, et al. KDS2010, a newly developed reversible MAO-B inhibitor, as an effective therapeutic candidate for Parkinson’s disease. Neurotherapeutics. 2021;18:1729–47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Nam MH, Cho J, Kwon DH, Park JY, Woo J, Lee JM, et al. Excessive astrocytic GABA causes cortical hypometabolism and impedes functional recovery after subcortical stroke. Cell Rep. 2020;32: 107861.

    Article  PubMed  CAS  Google Scholar 

  20. Jack CR Jr, Knopman DS, Jagust WJ, Petersen RC, Weiner MW, Aisen PS, et al. Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol. 2013;12:207–16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Long JM, Holtzman DM. Alzheimer disease: an update on pathobiology and treatment strategies. Cell. 2019;179:312–39.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Carter SF, Herholz K, Rosa-Neto P, Pellerin L, Nordberg A, Zimmer ER. Astrocyte biomarkers in Alzheimer’s disease. Trends Mol Med. 2019;25:77–95.

    Article  PubMed  CAS  Google Scholar 

  23. Kumar A, Fontana IC, Nordberg A. Reactive astrogliosis: a friend or foe in the pathogenesis of Alzheimer’s disease. J Neurochem. 2023;164:309–24.

    Article  PubMed  CAS  Google Scholar 

  24. Rodriguez-Vieitez E, Saint-Aubert L, Carter SF, Almkvist O, Farid K, Scholl M, et al. Diverging longitudinal changes in astrocytosis and amyloid PET in autosomal dominant Alzheimer’s disease. Brain. 2016;139:922–36.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Scholl M, Carter SF, Westman E, Rodriguez-Vieitez E, Almkvist O, Thordardottir S, et al. Early astrocytosis in autosomal dominant Alzheimer’s disease measured in vivo by multi-tracer positron emission tomography. Sci Rep. 2015;5:16404.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Bellaver B, Povala G, Ferreira PCL, Ferrari-Souza JP, Leffa DT, Lussier FZ, et al. Astrocyte reactivity influences amyloid-beta effects on tau pathology in preclinical Alzheimer’s disease. Nat Med. 2023;29:1775–81.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Oeckl P, Halbgebauer S, Anderl-Straub S, Steinacker P, Huss AM, Neugebauer H, et al. Glial fibrillary acidic protein in serum is increased in Alzheimer’s disease and correlates with cognitive impairment. J Alzheimers Dis. 2019;67:481–8.

    Article  PubMed  CAS  Google Scholar 

  28. Cicognola C, Janelidze S, Hertze J, Zetterberg H, Blennow K, Mattsson-Carlgren N, et al. Plasma glial fibrillary acidic protein detects Alzheimer pathology and predicts future conversion to Alzheimer dementia in patients with mild cognitive impairment. Alzheimers Res Ther. 2021;13:68.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Kim KY, Shin KY, Chang KA. GFAP as a potential biomarker for Alzheimer’s disease: a systematic review and meta-analysis. Cells. 2023;12(9):1309.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Birks J, Flicker L. Selegiline for Alzheimer’s disease. Cochrane Database Syst Rev. 2003:(1):CD000442.

  31. Kadir A, Marutle A, Gonzalez D, Scholl M, Almkvist O, Mousavi M, et al. Positron emission tomography imaging and clinical progression in relation to molecular pathology in the first Pittsburgh Compound B positron emission tomography patient with Alzheimer’s disease. Brain. 2011;134:301–17.

    Article  PubMed  Google Scholar 

  32. Lemoine L, Saint-Aubert L, Nennesmo I, Gillberg PG, Nordberg A. Cortical laminar tau deposits and activated astrocytes in Alzheimer’s disease visualised by (3)H-THK5117 and (3)H-deprenyl autoradiography. Sci Rep. 2017;7:45496.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Marutle A, Gillberg PG, Bergfors A, Yu W, Ni R, Nennesmo I, et al. (3)H-deprenyl and (3)H-PIB autoradiography show different laminar distributions of astroglia and fibrillar beta-amyloid in Alzheimer brain. J Neuroinflammation. 2013;10:90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Carter SF, Chiotis K, Nordberg A, Rodriguez-Vieitez E. Longitudinal association between astrocyte function and glucose metabolism in autosomal dominant Alzheimer’s disease. Eur J Nucl Med Mol Imaging. 2019;46:348–56.

    Article  PubMed  CAS  Google Scholar 

  35. Harada R, Hayakawa Y, Ezura M, Lerdsirisuk P, Du Y, Ishikawa Y, et al. (18)F-SMBT-1: a selective and reversible PET tracer for monoamine oxidase-B imaging. J Nucl Med. 2021;62:253–8.

    Article  PubMed  CAS  Google Scholar 

  36. Villemagne VL, Harada R, Dore V, Furumoto S, Mulligan R, Kudo Y, et al. Assessing reactive astrogliosis with (18)F-SMBT-1 across the Alzheimer disease spectrum. J Nucl Med. 2022;63:1560–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Tyacke RJ, Fisher A, Robinson ES, Grundt P, Turner EM, Husbands SM, et al. Evaluation and initial in vitro and ex vivo characterization of the potential positron emission tomography ligand, BU99008 (2-(4,5-dihydro-1H-imidazol-2-yl)-1- methyl-1H-indole), for the imidazoline(2) binding site. Synapse. 2012;66:542–51.

    Article  PubMed  CAS  Google Scholar 

  38. Olmos G, Alemany R, Escriba PV, Garcia-Sevilla JA. The effects of chronic imidazoline drug treatment on glial fibrillary acidic protein concentrations in rat brain. Br J Pharmacol. 1994;111:997–1002.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Ballesteros J, Maeztu AI, Callado LF, Gutierrez M, Garcia-Sevilla JA, Meana JJ. I2-Imidazoline receptors and monoamine oxidase B enzyme sites in human brain: covariation with age. Neurosci Lett. 2000;288:135–8.

    Article  PubMed  CAS  Google Scholar 

  40. Kumar A, Koistinen NA, Malarte ML, Nennesmo I, Ingelsson M, Ghetti B, et al. Astroglial tracer BU99008 detects multiple binding sites in Alzheimer’s disease brain. Mol Psychiatry. 2021;26:5833–47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Kato H, Okuno T, Isohashi K, Koda T, Shimizu M, Mochizuki H, et al. Astrocyte metabolism in multiple sclerosis investigated by 1-C-11 acetate PET. J Cereb Blood Flow Metab. 2021;41:369–79.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

In this paper, we used figures from the previously published papers to help readers understand. Fig. 1a was published in "Tracking pathophysiological orocesses in Alzheimer's disease: an updated hypothetical model of dynamic biomakers" Lancet Neurol 2013;12:207-16 and reprint permission was obtained from Elsevier. Fig. 1b was published in "Alzheimer Disease: An Update on Pathobiology and Treatmant Strategies" Cell 2019;179(2):312-339 and reprint permission was abtained from Elsevier. Fig. 1c was published "Astrocyte Biomakers in Alzheimer's Disease" Trends Mol Med 2019;25(2):77-95 and reprint permission was obtained from Elsevier. Fig. 1d was published in "Reactive astroliosis: A friend or foe in the pathogenesis of Alzheimer's disease" J Neurochem 2023;164(3):309-24 and wa licensed under the Creative commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction."

Funding

This study was supported by IBS-R001-D2 from the Institute for Basic Science funded by the Ministry of Science and ICT to C.J.L.; NRF-2018M3C7A1056898 and NRF-2020R1A2B5B01098109 from National Research Foundation (NRF) of Korea to M.Y.; 2022R1C1C1006167 and NRF-2018M3C7A1056897 from NRF to M.-H.N.

Author information

Authors and Affiliations

Authors

Contributions

The study was designed by MY. First draft was written by M-HN, HN, and MY. Revision and editing of the manuscript were conducted by M-HN, CJL, and MY. All authors have read and approved the final manuscript.

Corresponding authors

Correspondence to Min-Ho Nam, C. Justin Lee or Mijin Yun.

Ethics declarations

Conflict of Interest

Min-Ho Nam, Heesu Na, C. Justin Lee, and Mijin Yun declare no conflict of interest.

Ethical Approval

Not applicable.

Informed Consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nam, MH., Na, H., Justin Lee, C. et al. A Key Mediator and Imaging Target in Alzheimer’s Disease: Unlocking the Role of Reactive Astrogliosis Through MAOB. Nucl Med Mol Imaging (2024). https://doi.org/10.1007/s13139-023-00837-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13139-023-00837-y

Keywords

Navigation