Skip to main content

Advertisement

Log in

Increased Blood Residence Time as Markers of High-Risk Patent Foramen Ovale

  • Original Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Previous investigations have suggested that patients with patent foramen ovale (PFO) often have an atrial dysfunction, like to that observed in patients with atrial fibrillation (AF) which may concur to an increased risk of cryptogenic stroke. The aim of the study is to compare the atrial resident time (Rt) of PFO patients to those with sinus rhythm (SR) and AF using patient-specific 3D computational fluid dynamics (CFD) analysis. Models of left atrium (LA) hemodynamics were obtained from time-resolved CT scans and transthoracic echocardiography (TTE). Enrolled patients were divided into three groups: 30 healthy subjects with SR, 30 with PFO, and 30 with AF without PFO. Blood stasis was evaluated by determining the blood residence time (Rt) distribution in the LA and left atrial appendage (LAA). Overall, 90 patients (mean age 47.4 ± 7.5 years, 51 males) were included into the analysis. PFO patients exhibit higher mean Rt values compared to healthy subjects (2.65 ± 0.2 vs 1.5 ± 0.2 s). Conversely, AF patients presented higher Rt when compared to PFO patients (2.9 ± 0.3 vs 2.3 ± 0.2 s). Moreover, PFO patients presenting cerebral lesions at magnetic resonance imaging have a higher Rt compared to those without (2.9 ± 0.3 vs 2.3 ± 0.2 s, respectively, p < 0.001). PFO patients have a higher degree of atrial Rt compared to healthy subjects similar to that observed in AF patients. The higher mean LA Rt values offer an insight into the pathophysiological mechanism linking PFO with cryptogenic stroke and might be a marker of high-risk PFOs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. Rigatelli G, Zuin M. Leonardo da Vinci and patent foramen ovale: an historical perspective. Int J Cardiol. 2016;222:826. https://doi.org/10.1016/j.ijcard.2016.08.079.

    Article  PubMed  Google Scholar 

  2. Lethen H, Flachskampf FA, Schneider R, Sliwka U, Köhn G, Noth J, Hanrath P. Frequency of deep vein thrombosis in patients with patent foramen ovale and ischemic stroke or transient ischemic attack. Am J Cardiol. 1997;80:1066–9. https://doi.org/10.1016/s0002-9149(97)00604-8.

    Article  CAS  PubMed  Google Scholar 

  3. Samuel S, Reddy ST, Parsha KN, Nguyen T, Reddy Indupuru HK, Sharrief AZ, Zhu L, McCullough LD, Savitz SI. Routine surveillance of pelvic and lower extremity deep vein thrombosis in stroke patients with patent foramen ovale. J Thromb Thrombolysis. 2021;51:1150–6. https://doi.org/10.1007/s11239-020-02262-w.

    Article  PubMed  Google Scholar 

  4. Rigatelli G, Aggio S, Cardaioli P, Braggion G, Giordan M, Dell’avvocata F, Chinaglia M, Rigatelli G, Roncon L, Chen JP. Left atrial dysfunction in patients with patent foramen ovale and atrial septal aneurysm: an alternative concurrent mechanism for arterial embolism? JACC Cardiovasc Interv. 2009;2:655–62. https://doi.org/10.1016/j.jcin.2009.05.010.

    Article  PubMed  Google Scholar 

  5. Rigatelli G, Zuin M, Adami A, Aggio S, Lanza D, d’Elia K, Braggion G, Russo M, Mazza A, Roncon L. Left atrial enlargement as a maker of significant high-risk patent foramen ovale. Int J Cardiovasc Imaging. 2019;35:2049–56. https://doi.org/10.1007/s10554-019-01666-x.

    Article  PubMed  Google Scholar 

  6. Rigatelli G, Zuin M, Fong A. Computational flow dynamic analysis of right and left atria in patent foramen ovale: potential links with atrial fibrillation. J Atr Fibrillation. 2018;10:1852. https://doi.org/10.4022/jafib.1852.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, Flachskampf FA, Foster E, Goldstein SA, Kuznetsova T, Lancellotti P, Muraru D, Picard MH, Rietzschel ER, Rudski L, Spencer KT, Tsang W, Voigt JU. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2015;28:1-39.e14. https://doi.org/10.1016/j.echo.2014.10.003.

    Article  PubMed  Google Scholar 

  8. Silvestry FE, Cohen MS, Armsby LB, Burkule NJ, Fleishman CE, Hijazi ZM, Lang RM, Rome JJ, Wang Y, American Society of Echocardiography; Society for Cardiac Angiography and Interventions. Guidelines for the echocardiographic assessment of atrial septal defect and patent foramen ovale: from the American Society of Echocardiography and Society for Cardiac Angiography and Interventions. J Am Soc Echocardiogr. 2015;28:910–58.

    Article  PubMed  Google Scholar 

  9. Sanatkhani S, Nedios S, Menon PG, Bollmann A, Hindricks G, Shroff SG. Subject-specific calculation of left atrial appendage blood-borne particle residence time distribution in atrial fibrillation. Front Physiol. 2021;12: 633135. https://doi.org/10.3389/fphys.2021.633135.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Bieging ET, Morris A, Chang L, Dagher L, Marrouche NF, Cates J. Statistical shape analysis of the left atrial appendage predicts stroke in atrial fibrillation. Int J Cardiovasc Imaging. 2021;37:2521–7. https://doi.org/10.1007/s10554-021-02262-8.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Jensen JA. Estimation of blood velocities using ultrasound: a signal processing approach. New York, NY, USA: Cambridge University Press; 1996.

    Google Scholar 

  12. Zhang LT, Gay M. Characterizing left atrial appendage functions in sinus rhythm and atrial fibrillation using computational models. J Biomech. 2008;41:2515–23. https://doi.org/10.1016/j.jbiomech.2008.05.012.

    Article  PubMed  Google Scholar 

  13. Feng L, Gao H, Qi N, Danton M, Hill NA, Luo X. Fluid-structure interaction in a fully coupled three-dimensional mitral-atrium-pulmonary model. Biomech Model Mechanobiol. 2021;20:1267–95. https://doi.org/10.1007/s10237-021-01444-6.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Gao H, Wang H, Berry C, Luo X, Griffith BE. Quasi-static image-based immersed boundary-finite element model of left ventricle under diastolic loading. Int J Numer Methods Biomed Eng. 2014;30:1199–222.

    Article  Google Scholar 

  15. Griffith BE, Luo X. Hybrid finite difference/finite element immersed boundary method. Int J Numer Methods Biomed Eng. 2017;33: e2888.

    Article  Google Scholar 

  16. Morales Ferez X, Mill J, Juhl KA, Acebes C, Iriart X, Legghe B, Cochet H, De Backer O, Paulsen RR, Camara O. Deep learning framework for real-time estimation of in-silico thrombotic risk indices in the left atrial appendage. Front Physiol. 2021;12: 694945. https://doi.org/10.3389/fphys.2021.694945.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Vedula V, George R, Younes L, Mittal R. Hemodynamics in the left atrium and its effect on ventricular flow patterns. J Biomech Eng. 2015;137: 111003.

    Article  PubMed  Google Scholar 

  18. Dueñas-Pamplona J, García JG, Sierra-Pallares J, Ferrera C, Agujetas R, López-Mínguez JR. A comprehensive comparison of various patient-specific CFD models of the left atrium for atrial fibrillation patients. Comput Biol Med. 2021;133: 104423. https://doi.org/10.1016/j.compbiomed.2021.104423.

    Article  PubMed  Google Scholar 

  19. Habibi M, Lima JA, Khurram IM, Zimmerman SL, Zipunnikov V, Fukumoto K, Spragg D, Ashikaga H, Rickard J, Marine JE, Calkins H, Nazarian S. Association of left atrial function and left atrial enhancement in patients with atrial fibrillation: cardiac magnetic resonance study. Circ Cardiovasc Imaging. 2015;8: e002769. https://doi.org/10.1161/CIRCIMAGING.114.002769.

    Article  PubMed  Google Scholar 

  20. Garcia-Villalba M, Rossini L, Gonzalo A, Vigneault D, Kahn AM, Flores O, McVeigh E, del Alamo de Pedro JC. Abstract 15017: Patient-specific mapping of left atrial thrombosis risk by computational fluid dynamics. Circulation. 2018;138:A15017.

    Google Scholar 

  21. Aune E, Baekkevar M, Roislien J, Rodevand O, Otterstad JR. Normal reference ranges for left and right atrial volume indexes and ejection fractions obtained with real-time three-dimensional echocardiography. Eur J Echocardiogr. 2009;10:738–44.

    Article  PubMed  Google Scholar 

  22. Cotter PE, Martin PJ, Pugh PJ, Warburton EA, Cheriyan J, Belham M. Increased incidence of interatrial block in younger adults with cryptogenic stroke and patent foramen ovale. Cerebrovasc Dis Extra. 2011;1:36–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kim TW, Jung SW, Song IU, Koo J, Choi HS, Lee KS, Park JW, Park HJ, Kim JS. Left atrial dilatation is associated with severe ischemic stroke in men with non-valvular atrial fibrillation. J Neurol Sci. 2015;354:97–102.

    Article  PubMed  Google Scholar 

  24. Lee MJ, Park SJ, Yoon CH, Hwang JW, Ryoo S, Kim SJ, Kim GM, Chung CS, Lee KH, Bang OY. Association of left atrial enlargement with cortical infarction in subjects with patent foramen ovale. J Stroke. 2016;18:304–11.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Rigatelli G, Dell’Avvocata F, Cardaioli P, Giordan M, Braggion G, Aggio S, Chinaglia M, Mandapaka S, Kuruvilla J, Chen JP, Nanjundappa A. Permanent right-to-left shunt is the key factor in managing patent foramen ovale. J Am Coll Cardiol. 2011;58:2257–61.

    Article  PubMed  Google Scholar 

  26. Hashemi J, Rai S, Ghafghazi S, Berson RE. Blood residence time to assess significance of coronary artery stenosis. Sci Rep. 2020;10:11658. https://doi.org/10.1038/s41598-020-68292-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rossini L, Martinez-Legazpi P, Vu V, Fernandez-Friera L, Perez Del Villar C, Rodriguez-Lopez S, et al. A clinical method for mapping and quantifying blood stasis in the left ventricle. J Biomech. 2016;49:2152–61. https://doi.org/10.1016/j.jbiomech.2015.11.049.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Gianluca Rigatelli and Marco Zuin: conceptualization, draft the manuscript, performed the analysis. Loris Roncon: collected the data and supervised the manuscript. All authors read the final version and approved the manuscript.

Corresponding author

Correspondence to Gianluca Rigatelli.

Ethics declarations

Ethics Approval

Ethical approval was waived due to the retrospective nature of the manuscripts and use of anonymized data.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rigatelli, G., Zuin, M. & Roncon, L. Increased Blood Residence Time as Markers of High-Risk Patent Foramen Ovale. Transl. Stroke Res. 14, 304–310 (2023). https://doi.org/10.1007/s12975-022-01045-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-022-01045-0

Keywords

Navigation