Skip to main content

Advertisement

Log in

Neutrophil Extracellular Traps may be a Potential Target for Treating Early Brain Injury in Subarachnoid Hemorrhage

  • Original Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Neuroinflammation is closely associated with poor prognosis in patients with subarachnoid hemorrhage (SAH). The purpose of this study was to investigate the role of neutrophil extracellular traps (NETs), which are important regulators of sterile inflammation, in SAH. In this study, markers of NET formation, quantified by the level of citrullinated histone H3 (CitH3), were significantly increased after SAH and correlated with SAH severity. CitH3 peaked at 12 h in peripheral blood and at 24 h in the brain. Administration of the peptidyl arginine deiminase 4 (PAD4) selective antagonist GSK484 substantially attenuated SAH-induced brain edema and neuronal injury. Moreover, the benefit of NET inhibition was also confirmed by DNAse I treatment and neutrophil depletion. Mechanistically, NETs markedly exacerbated microglial inflammation in vitro. NET formation aggravated neuroinflammation by promoting microglial activation and increased the levels of TNF-α, IL-1β, and IL-6, while inhibiting NETs demonstrated anti-inflammatory effects by decreasing the levels of these proinflammatory factors. Moreover, neurogenic pulmonary edema (NPE), a severe nonneurological complication after SAH, is associated with a high level of NET formation. However, GSK484 effectively inhibited the formation of NETs in the lungs of NPE mice, thereby preventing the diffusion of neutrophilic infiltration and attenuating the swelling of the alveolar interstitium. In conclusion, NETs promoted neuroinflammation after SAH, while pharmacological inhibition of PAD4-NETs could reduce the inflammatory damage caused by SAH. These results supported the idea that NETs might be potential therapeutic targets for SAH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

All raw data used in this manuscript are available on reasonable request.

Abbreviations

SAH:

Subarachnoid hemorrhage

NETs:

Neutrophil extracellular traps

PAD4:

Peptidyl arginine deiminase 4

NPE:

Neurogenic pulmonary edema

CNS:

Central nervous system

ROS:

Reactive oxygen species

CitH3:

Citrullinated histone H3

TBI:

Traumatic brain injury

DNase I:

Deoxyribonuclease-1

PMNs:

Polymorphonuclear leukocytes

MWM:

Morris water maze

ELISA:

Enzyme linked immunosorbent assay

qRT-PCR:

Quantitative real-time polymerase chain reaction

FJC:

Fluoro-jade C

FACS:

Flow cytometric analysis

References

  1. Connolly ES Jr, Rabinstein AA, Carhuapoma JR, Derdeyn CP, Dion J, Higashida RT, Hoh BL, Kirkness CJ, Naidech AM, Ogilvy CS, et al. Guidelines for the management of aneurysmal subarachnoid hemorrhage: a guideline for healthcare professionals from the American Heart Association/american Stroke Association. Stroke. 2012;43:1711–37.

    Article  PubMed  Google Scholar 

  2. Maher M, Schweizer TA, Macdonald RL. Treatment of spontaneous subarachnoid hemorrhage: guidelines and gaps. Stroke. 2020;51:1326–32.

    Article  PubMed  Google Scholar 

  3. Gris T, Laplante P, Thebault P, Cayrol R, Najjar A, Joannette-Pilon B, Brillant-Marquis F, Magro E, English SW, Lapointe R, et al. Innate immunity activation in the early brain injury period following subarachnoid hemorrhage. J Neuroinflammation. 2019;16:253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sabri M, Lass E, Macdonald RL. Early brain injury: a common mechanism in subarachnoid hemorrhage and global cerebral ischemia. Stroke Res Treat. 2013;2013:394036.

    PubMed  PubMed Central  Google Scholar 

  5. Tao T, Liu GJ, Shi X, Zhou Y, Lu Y, Gao YY, Zhang XS, Wang H, Wu LY, Chen CL, et al. DHEA Attenuates microglial activation via induction of JMJD3 in experimental subarachnoid haemorrhage. J Neuroinflammation. 2019;16:243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Xu W, Li T, Gao L, Zheng J, Yan J, Zhang J, Shao A. Apelin-13/APJ system attenuates early brain injury via suppression of endoplasmic reticulum stress-associated TXNIP/NLRP3 inflammasome activation and oxidative stress in a AMPK-dependent manner after subarachnoid hemorrhage in rats. J Neuroinflammation. 2019;16:247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhang HB, Tu XK, Chen Q, Shi SS. Propofol reduces inflammatory brain injury after subarachnoid hemorrhage: involvement of PI3K/Akt pathway. J Stroke Cerebrovasc Dis. 2019;28:104375.

    Article  PubMed  Google Scholar 

  8. Zheng ZV, Lyu H, Lam SYE, Lam PK, Poon WS, Wong GKC. The dynamics of microglial polarization reveal the resident neuroinflammatory responses after subarachnoid hemorrhage. Transl Stroke Res. 2020;11:433–49.

    Article  CAS  PubMed  Google Scholar 

  9. Chen GY, Nunez G. Sterile inflammation: sensing and reacting to damage. Nat Rev Immunol. 2010;10:826–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cooper PR, Palmer LJ, Chapple IL. Neutrophil extracellular traps as a new paradigm in innate immunity: friend or foe? Periodontol. 2000;2013(63):165–97.

    Google Scholar 

  11. Kaplan MJ, Radic M. Neutrophil extracellular traps: double-edged swords of innate immunity. J Immunol. 2012;189:2689–95.

    Article  CAS  PubMed  Google Scholar 

  12. Franck G, Mawson TL, Folco EJ, Molinaro R, Ruvkun V, Engelbertsen D, Liu X, Tesmenitsky Y, Shvartz E, Sukhova GK, et al. Roles of PAD4 and NETosis in experimental atherosclerosis and arterial injury: implications for superficial erosion. Circ Res. 2018;123:33–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kimball AS, Obi AT, Diaz JA, Henke PK. The emerging role of NETs in venous thrombosis and immunothrombosis. Front Immunol. 2016;7:236.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Mistry P, Kaplan MJ. Cell death in the pathogenesis of systemic lupus erythematosus and lupus nephritis. Clin Immunol. 2017;185:59–73.

    Article  CAS  PubMed  Google Scholar 

  15. Raup-Konsavage WM, Wang Y, Wang WW, Feliers D, Ruan H, Reeves WB. Neutrophil peptidyl arginine deiminase-4 has a pivotal role in ischemia/reperfusion-induced acute kidney injury. Kidney Int. 2018;93:365–74.

    Article  CAS  PubMed  Google Scholar 

  16. Tohme S, Yazdani HO, Al-Khafaji AB, Chidi AP, Loughran P, Mowen K, Wang Y, Simmons RL, Huang H, Tsung A. Neutrophil extracellular traps promote the development and progression of liver metastases after surgical stress. Cancer Res. 2016;76:1367–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zenaro E, Pietronigro E, Della Bianca V, Piacentino G, Marongiu L, Budui S, Turano E, Rossi B, Angiari S, Dusi S, et al. Neutrophils promote Alzheimer’s disease-like pathology and cognitive decline via LFA-1 integrin. Nat Med. 2015;21:880–6.

    Article  CAS  PubMed  Google Scholar 

  18. Rosell A, Cuadrado E, Ortega-Aznar A, Hernandez-Guillamon M, Lo EH, Montaner J. MMP-9-positive neutrophil infiltration is associated to blood-brain barrier breakdown and basal lamina type IV collagen degradation during hemorrhagic transformation after human ischemic stroke. Stroke. 2008;39:1121–6.

    Article  CAS  PubMed  Google Scholar 

  19. Liu YW, Li S, Dai SS. Neutrophils in traumatic brain injury (TBI): friend or foe? J Neuroinflammation. 2018;15:146.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Garcia-Culebras A, Duran-Laforet V, Pena-Martinez C, Moraga A, Ballesteros I, Cuartero MI, de la Parra J, Palma-Tortosa S, Hidalgo A, Corbi AL, et al. Role of TLR4 (Toll-like receptor 4) in N1/N2 neutrophil programming after stroke. Stroke. 2019;50:2922–32.

    Article  CAS  PubMed  Google Scholar 

  21. Ye ZN, Wu LY, Liu JP, Chen Q, Zhang XS, Lu Y, Zhou ML, Li W, Zhang ZH, Xia DY, et al. Inhibition of leukotriene B4 synthesis protects against early brain injury possibly via reducing the neutrophil-generated inflammatory response and oxidative stress after subarachnoid hemorrhage in rats. Behav Brain Res. 2018;339:19–27.

    Article  CAS  PubMed  Google Scholar 

  22. Amantea D, Marrone MC, Nistico R, Federici M, Bagetta G, Bernardi G, Mercuri NB. Oxidative stress in stroke pathophysiology validation of hydrogen peroxide metabolism as a pharmacological target to afford neuroprotection. Int Rev Neurobiol. 2009;85:363–74.

    Article  CAS  PubMed  Google Scholar 

  23. Coulibaly AP, Gartman WT, Swank V, Gomes JA, Ruozhuo L, DeBacker J, Provencio JJ. RAR-related orphan receptor gamma T (RoRgammat)-related cytokines play a role in neutrophil infiltration of the central nervous system after subarachnoid hemorrhage. Neurocrit Care. 2020;33:140–51.

  24. Kim SW, Lee H, Lee HK, Kim ID, Lee JK. Neutrophil extracellular trap induced by HMGB1 exacerbates damages in the ischemic brain. Acta Neuropathol Commun. 2019;7:94.

    Article  PubMed  Google Scholar 

  25. Perez-de-Puig I, Miro-Mur F, Ferrer-Ferrer M, Gelpi E, Pedragosa J, Justicia C, Urra X, Chamorro A, Planas AM. Neutrophil recruitment to the brain in mouse and human ischemic stroke. Acta Neuropathol. 2015;129:239–57.

    Article  CAS  PubMed  Google Scholar 

  26. Tan Q, Guo P, Zhou J, Zhang J, Zhang B, Lan C, Xian J, Ge M, Feng H, Chen Z. Targeting neutrophil extracellular traps enhanced tPA fibrinolysis for experimental intracerebral hemorrhage. Transl Res. 2019;211:139–46.

    Article  CAS  PubMed  Google Scholar 

  27. Vaibhav K, Braun M, Alverson K, Khodadadi H, Kutiyanawalla A, Ward A, Banerjee C, Sparks T, Malik A, Rashid MH, et al. Neutrophil extracellular traps exacerbate neurological deficits after traumatic brain injury. Sci Adv. 2020;6:eaax8847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jones JE, Causey CP, Knuckley B, Slack-Noyes JL, Thompson PR. Protein arginine deiminase 4 (PAD4): current understanding and future therapeutic potential. CurrOpin Drug Discov Devel. 2009;12:616–27.

    CAS  Google Scholar 

  29. Du M, Yang W, Schmull S, Gu J, Xue S. Inhibition of peptidyl arginine deiminase-4 protects against myocardial infarction induced cardiac dysfunction. Int Immunopharmacol. 2020;78:106055.

    Article  CAS  PubMed  Google Scholar 

  30. Zeng J, Xu H, Fan PZ, Xie J, He J, Yu J, Gu X, Zhang CJ. Kaempferol blocks neutrophil extracellular traps formation and reduces tumour metastasis by inhibiting ROS-PAD4 pathway. J Cell Mol Med. 2020;24:7590–9.

  31. Macmillan CS, Grant IS, Andrews PJ. Pulmonary and cardiac sequelae of subarachnoid haemorrhage: time for active management? Intensive Care Med. 2002;28:1012–23.

    Article  CAS  PubMed  Google Scholar 

  32. Mutoh T, Kazumata K, Ueyama-Mutoh T, Taki Y, Ishikawa T. Transpulmonarythermodilution-based management of neurogenic pulmonary edema after subarachnoid hemorrhage. Am J Med Sci. 2015;350:415–9.

    Article  PubMed  Google Scholar 

  33. Suzuki H, Sozen T, Hasegawa Y, Chen W, Zhang JH. Caspase-1 inhibitor prevents neurogenic pulmonary edema after subarachnoid hemorrhage in mice. Stroke. 2009;40:3872–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Weir BK. Pulmonary edema following fatal aneurysm rupture. J Neurosurg. 1978;49:502–7.

    Article  CAS  PubMed  Google Scholar 

  35. Peña-Martínez C, Durán-Laforet V, García-Culebras A, Ostos F, Hernández-Jiménez M, Bravo-Ferrer I, Pérez-Ruiz A, Ballenilla F, Díaz-Guzmán J, Pradillo JM, et al. Pharmacological modulation of neutrophil extracellular traps reverses thrombotic stroke tPA (tissue-type plasminogen activator) resistance. Stroke. 2019;50:3228–37.

    Article  PubMed  Google Scholar 

  36. Cai W, Wang J, Hu M, Chen X, Lu Z, Bellanti JA, Zheng SG. All trans-retinoic acid protects against acute ischemic stroke by modulating neutrophil functions through STAT1 signaling. J Neuroinflammation. 2019;16:175.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Gules I, Satoh M, Nanda A, Zhang JH. Apoptosis, blood-brain barrier, and subarachnoid hemorrhage. Acta Neurochir Suppl. 2003;86:483–7.

    CAS  PubMed  Google Scholar 

  38. Chen J, Wang L, Wu C, Hu Q, Gu C, Yan F, Li J, Yan W, Chen G. Melatonin-enhanced autophagy protects against neural apoptosis via a mitochondrial pathway in early brain injury following a subarachnoid hemorrhage. J Pineal Res. 2014;56:12–9.

    Article  CAS  PubMed  Google Scholar 

  39. Chen J, Chen G, Li J, Qian C, Mo H, Gu C, Yan F, Yan W, Wang L. Melatonin attenuates inflammatory response-induced brain edema in early brain injury following a subarachnoid hemorrhage: a possible role for the regulation of pro-inflammatory cytokines. J Pineal Res. 2014;57:340–7.

    Article  CAS  PubMed  Google Scholar 

  40. Gao Y, Zhuang Z, Lu Y, Tao T, Zhou Y, Liu G, Wang H, Zhang D, Wu L, Dai H, et al. Curcumin mitigates neuro-inflammation by modulating microglia polarization through inhibiting TLR4 axis signaling pathway following experimental subarachnoid hemorrhage. Front Neurosci. 2019;13:1223.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Peng Y, Zhuang J, Ying G, Zeng H, Zhou H, Cao Y, Chen H, Xu C, Fu X, Xu H, et al. Stimulator of IFN genes mediates neuroinflammatory injury by suppressing AMPK signal in experimental subarachnoid hemorrhage. J Neuroinflammation. 2020;17:165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Borissoff JI, Joosen IA, Versteylen MO, Brill A, Fuchs TA, Savchenko AS, Gallant M, Martinod K, Ten Cate H, Hofstra L, et al. Elevated levels of circulating DNA and chromatin are independently associated with severe coronary atherosclerosis and a prothrombotic state. Arterioscler Thromb Vasc Biol. 2013;33:2032–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta DeltaC(T)) method. Methods. 2001;25:402–8.

    Article  CAS  PubMed  Google Scholar 

  44. Prabhakara KS, Kota DJ, Jones GH, Srivastava AK, Cox CS Jr, Olson SD. Teriflunomide modulates vascular permeability and microglial activation after experimental traumatic brain injury. Mol Ther. 2018;26:2152–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Valles J, Lago A, Santos MT, Latorre AM, Tembl JI, Salom JB, Nieves C, Moscardo A. Neutrophil extracellular traps are increased in patients with acute ischemic stroke: prognostic significance. Thromb Haemost. 2017;117:1919–29.

    Article  PubMed  Google Scholar 

  46. Neulen A, Pantel T, Kosterhon M, Kramer A, Kunath S, Petermeyer M, Moosmann B, Lotz J, Kantelhardt SR, Ringel F, Thal SC. Neutrophils mediate early cerebral cortical hypoperfusion in a murine model of subarachnoid haemorrhage. Sci Rep. 2019;9:8460.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Fujii M, Sherchan P, Soejima Y, Doycheva D, Zhao D, Zhang JH. Cannabinoid receptor type 2 agonist attenuates acute neurogenic pulmonary edema by preventing neutrophil migration after subarachnoid hemorrhage in rats. Acta Neurochir Suppl. 2016;121:135–9.

    Article  PubMed  Google Scholar 

  48. Mohanty T, Fisher J, Bakochi A, Neumann A, Cardoso JFP, Karlsson CAQ, Pavan C, Lundgaard I, Nilson B, Reinstrup P, et al. Neutrophil extracellular traps in the central nervous system hinder bacterial clearance during pneumococcal meningitis. Nat Commun. 2019;10:1667.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Nomura K, Miyashita T, Yamamoto Y, Munesue S, Harashima A, Takayama H, Fushida S, Ohta T. Citrullinated histone H3: early biomarker of neutrophil extracellular traps in septic liver damage. J Surg Res. 2019;234:132–8.

    Article  CAS  PubMed  Google Scholar 

  50. Pan B, Alam HB, Chong W, Mobley J, Liu B, Deng Q, Liang Y, Wang Y, Chen E, Wang T, et al. CitH3: a reliable blood biomarker for diagnosis and treatment of endotoxic shock. Sci Rep. 2017;7:8972.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Allen C, Thornton P, Denes A, McColl BW, Pierozynski A, Monestier M, Pinteaux E, Rothwell NJ, Allan SM. Neutrophil cerebrovascular transmigration triggers rapid neurotoxicity through release of proteases associated with decondensed DNA. J Immunol. 2012;189:381–92.

    Article  CAS  PubMed  Google Scholar 

  52. Zhang Y, Yang X, Ge X, Zhang F. Puerarin attenuates neurological deficits via Bcl-2/Bax/cleaved caspase-3 and Sirt3/SOD2 apoptotic pathways in subarachnoid hemorrhage mice. Biomed Pharmacother. 2019;109:726–33.

    Article  CAS  PubMed  Google Scholar 

  53. Liu J, Dong Z. Neutrophil extracellular traps in ischemic AKI: new way to kill. Kidney Int. 2018;93:303–5.

    Article  PubMed  Google Scholar 

  54. Lange S, Rocha-Ferreira E, Thei L, Mawjee P, Bennett K, Thompson PR, Subramanian V, Nicholas AP, Peebles D, Hristova M, Raivich G. Peptidylarginine deiminases: novel drug targets for prevention of neuronal damage following hypoxic ischemic insult (HI) in neonates. J Neurochem. 2014;130:555–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sarswat A, Wasilewski E, Chakka SK, Bello AM, Caprariello AV, Muthuramu CM, Stys PK, Dunn SE, Kotra LP. Inhibitors of protein arginine deiminases and their efficacy in animal models of multiple sclerosis. Bioorg Med Chem. 2017;25:2643–56.

    Article  CAS  PubMed  Google Scholar 

  56. Huang H, Tohme S, Al-Khafaji AB, Tai S, Loughran P, Chen L, Wang S, Kim J, Billiar T, Wang Y, Tsung A. Damage-associated molecular pattern-activated neutrophil extracellular trap exacerbates sterile inflammatory liver injury. Hepatology. 2015;62:600–14.

    Article  CAS  PubMed  Google Scholar 

  57. Jarrot PA, Tellier E, Plantureux L, Crescence L, Robert S, Chareyre C, Daniel L, Secq V, Garcia S, Dignat-George F, et al. Neutrophil extracellular traps are associated with the pathogenesis of diffuse alveolar hemorrhage in murine lupus. J Autoimmun. 2019;100:120–30.

    Article  CAS  PubMed  Google Scholar 

  58. Provencio JJ, Swank V, Lu H, Brunet S, Baltan S, Khapre RV, Seerapu H, Kokiko-Cochran ON, Lamb BT, Ransohoff RM. Neutrophil depletion after subarachnoid hemorrhage improves memory via NMDA receptors. Brain Behav Immun. 2016;54:233–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Šedý J, Kuneš J, Zicha J. Pathogenetic mechanisms of neurogenic pulmonary edema. J Neurotrauma. 2015;32:1135–45.

    Article  PubMed  Google Scholar 

  60. Chen J, Qian C, Duan H, Cao S, Yu X, Li J, Gu C, Yan F, Wang L, Chen G. Melatonin attenuates neurogenic pulmonary edema via the regulation of inflammation and apoptosis after subarachnoid hemorrhage in rats. J Pineal Res. 2015;59:469–77.

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Key R&D program of China (2018YFC1312600, 2018YFC1312603), the Key Research and Development Project of Zhejiang Province (no.2018C03011), and the National Natural Science Foundation of China (no.81771246, 81971099, 81870908, 81901234, 81601003, 81801144, 81701152).

Author information

Authors and Affiliations

Authors

Contributions

HHZ, XJF, JC, and YCP performed the SAH model and Western blots. CJS, MYY, JFZ, JYC, and HJC prepared the figures. QY, CRX, and YC performed the immunostaining. HZ, LBH, and JRL performed RT-PCR; SLC and CG performed cell culture and data analysis. FY and GC designed experiments. HHZ, JC, CJS, MYY and XJF contributed to the writing and editing of the manuscript. All authors read and approved the manuscript.

Corresponding authors

Correspondence to Feng Yan or Gao Chen.

Ethics declarations

Ethics Approval and Consent to Participate

All procedures involved animal were conformed to the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health and were approved by the Institutional Animal Care and Use Committee of Zhejiang University.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5970 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, H., Fu, X., Cai, J. et al. Neutrophil Extracellular Traps may be a Potential Target for Treating Early Brain Injury in Subarachnoid Hemorrhage. Transl. Stroke Res. 13, 112–131 (2022). https://doi.org/10.1007/s12975-021-00909-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-021-00909-1

Keywords

Navigation