Skip to main content

Advertisement

Log in

Folic Acid Deficiency Enhances the Tyr705 and Ser727 Phosphorylation of Mitochondrial STAT3 in In Vivo and In Vitro Models of Ischemic Stroke

  • Original Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Ischemic stroke remains one of the most common causes of death and disability worldwide. The stroke patients with an inadequate intake of folic acid tend to have increased brain injury and poorer prognosis. However, the precise mechanisms underlying the harmful effects of folic acid deficiency (FD) in ischemic stroke is still elusive. Here, we aimed to test the hypothesis that mitochondrial localized STAT3 (mitoSTAT3) expression may be involved in the process of neuronal damage induced by FD in in vivo and in vitro models of ischemic stroke. Our results exhibited that FD increased infarct size and aggravated the damage of mitochondrial ultrastructure in ischemic brains. Meanwhile, FD upregulated the phosphorylation levels of mitoSTAT3 at Tyr705 (Y705) and Ser727 (S727) sites in the rat middle cerebral artery occlusion/reperfusion (MCAO/R) model and oxygen-glucose deprivation followed by reperfusion (OGD/R) N2a cells. Furthermore, the inhibition of JAK2 by AG490 led to a significant decrease in FD-induced phosphorylation of Y705, while S727 phosphorylation was unaffected. Conversely, U0126 and LY294002, which respectively inhibited phosphorylation of ERK1/2 and Akt, partially prevented S727 phosphorylation, but had limited effects on the level of pY705, suggesting that phosphorylation of Y705 and S727 is regulated via independent mechanisms in FD-treated brains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

We declared that materials described in the manuscript, including all relevant raw data, will be freely available to any scientist wishing to use them for non-commercial purposes, without breaching participant confidentiality.

References

  1. Li WA, Geng X, Ding Y. Stroke is a global epidemic: new developments in clinical and translational cerebrovascular diseases research. Neurol Res. 2017;39(6):475–6. https://doi.org/10.1080/01616412.2017.1330307.

    Article  CAS  PubMed  Google Scholar 

  2. Davis CK, Nampoothiri SS, Rajanikant GK. Folic acid exerts post-ischemic neuroprotection in vitro through HIF-1alpha stabilization. Mol Neurobiol. 2018;55(11):8328–45. https://doi.org/10.1007/s12035-018-0982-3.

    Article  CAS  PubMed  Google Scholar 

  3. Hwang IK, Yoo KY, Suh HW, Kim YS, Kwon DY, Kwon YG, et al. Folic acid deficiency increases delayed neuronal death, DNA damage, platelet endothelial cell adhesion molecule-1 immunoreactivity, and gliosis in the hippocampus after transient cerebral ischemia. J Neurosci Res. 2008;86(9):2003–15. https://doi.org/10.1002/jnr.21647.

    Article  CAS  PubMed  Google Scholar 

  4. Zhao Y, Huang G, Chen S, Gou Y, Dong Z, Zhang X. Folic acid deficiency increases brain cell injury via autophagy enhancement after focal cerebral ischemia. J Nutr Biochem. 2016;38:41–9. https://doi.org/10.1016/j.jnutbio.2016.08.009.

    Article  CAS  PubMed  Google Scholar 

  5. Yilmaz N, Yilmaz M, Pence S, Ozaslan J, Kocoglu H, Yilmaz G. Determination of serum B12 vitamin and folic acid levels in patient with stroke. Acta Med (Hradec Kralove). 2001;44(1):37–9.

    Article  CAS  Google Scholar 

  6. Rebe C, Vegran F, Berger H, Ghiringhelli F. STAT3 activation: a key factor in tumor immunoescape. Jak-stat. 2013;2(1):e23010. https://doi.org/10.4161/jkst.23010.

    Article  PubMed  PubMed Central  Google Scholar 

  7. You L, Wang Z, Li H, Shou J, Jing Z, Xie J, et al. The role of STAT3 in autophagy. Autophagy. 2015;11(5):729–39. https://doi.org/10.1080/15548627.2015.1017192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ma J, Zhen X, Huang X, Jiang X. Folic acid supplementation repressed hypoxia-induced inflammatory response via ROS and JAK2/STAT3 pathway in human promyelomonocytic cells. Nutr Res. 2018;53:40–50. https://doi.org/10.1016/j.nutres.2018.03.007.

    Article  CAS  PubMed  Google Scholar 

  9. Hansen MF, Greibe E, Skovbjerg S, Rohde S, Kristensen AC, Jensen TR, et al. Folic acid mediates activation of the pro-oncogene STAT3 via the Folate receptor alpha. Cell Signal. 2015;27(7):1356–68. https://doi.org/10.1016/j.cellsig.2015.03.020.

    Article  CAS  PubMed  Google Scholar 

  10. Kerek R, Geoffroy A, Bison A, Martin N, Akchiche N, Pourie G, et al. Early methyl donor deficiency may induce persistent brain defects by reducing Stat3 signaling targeted by miR-124. Cell Death Dis. 2013;4:e755. https://doi.org/10.1038/cddis.2013.278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yang Y, Li X, Sun Q, He B, Jia Y, Cai D, et al. Folate deprivation induces cell cycle arrest at G0/G1 phase and apoptosis in hippocampal neuron cells through down-regulation of IGF-1 signaling pathway. Int J Biochem Cell Biol. 2016;79:222–30. https://doi.org/10.1016/j.biocel.2016.08.040.

    Article  CAS  PubMed  Google Scholar 

  12. Boengler K, Hilfiker-Kleiner D, Heusch G, Schulz R. Inhibition of permeability transition pore opening by mitochondrial STAT3 and its role in myocardial ischemia/reperfusion. Basic Res Cardiol. 2010;105(6):771–85. https://doi.org/10.1007/s00395-010-0124-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wu L, Tan JL, Wang ZH, Chen YX, Gao L, Liu JL, et al. ROS generated during early reperfusion contribute to intermittent hypobaric hypoxia-afforded cardioprotection against postischemia-induced Ca(2+) overload and contractile dysfunction via the JAK2/STAT3 pathway. J Mol Cell Cardiol. 2015;81:150–61. https://doi.org/10.1016/j.yjmcc.2015.02.015.

    Article  CAS  PubMed  Google Scholar 

  14. Pipicz M, Demjan V, Sarkozy M, Csont T. Effects of Cardiovascular Risk Factors on Cardiac STAT3. Int J Mol Sci. 2018;19(11). https://doi.org/10.3390/ijms19113572.

  15. Zhou L, Too H-P. Mitochondrial localized STAT3 is involved in NGF induced neurite outgrowth. PLoS One. 2011;6(6):e21680-e. https://doi.org/10.1371/journal.pone.0021680.

    Article  CAS  Google Scholar 

  16. Chen S, Dong Z, Zhao Y, Sai N, Wang X, Liu H, et al. Homocysteine induces mitochondrial dysfunction involving the crosstalk between oxidative stress and mitochondrial pSTAT3 in rat ischemic brain. Sci Rep. 2017;7(1):6932. https://doi.org/10.1038/s41598-017-07112-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhu J, Li Z, Zhang G, Meng K, Kuang W, Li J, et al. Icaritin shows potent anti-leukemia activity on chronic myeloid leukemia in vitro and in vivo by regulating MAPK/ERK/JNK and JAK2/STAT3 /AKT signalings. PLoS One. 2011;6(8):e23720. https://doi.org/10.1371/journal.pone.0023720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liang F, Ren C, Wang J, Wang S, Yang L, Han X et al. The crosstalk between STAT3 and p53/RAS signaling controls cancer cell metastasis and cisplatin resistance via the Slug/MAPK/PI3K/AKT-mediated regulation of EMT and autophagy. 2019;8(10):59. https://doi.org/10.1038/s41389-019-0165-8.

  19. Washburn KB, Neary JT. P2 purinergic receptors signal to STAT3 in astrocytes: difference in STAT3 responses to P2Y and P2X receptor activation. Neuroscience. 2006;142(2):411–23. https://doi.org/10.1016/j.neuroscience.2006.06.034.

    Article  CAS  PubMed  Google Scholar 

  20. Murase S, McKay RD. Neuronal activity-dependent STAT3 localization to nucleus is dependent on Tyr-705 and Ser-727 phosphorylation in rat hippocampal neurons. Eur J Neurosci. 2014;39(4):557–65. https://doi.org/10.1111/ejn.12412.

    Article  PubMed  Google Scholar 

  21. Hwang SY, Kang YJ, Sung B, Kim M, Kim DH, Lee Y, et al. Folic acid promotes the myogenic differentiation of C2C12 murine myoblasts through the Akt signaling pathway. Int J Mol Med. 2015;36(4):1073–80. https://doi.org/10.3892/ijmm.2015.2311.

    Article  CAS  PubMed  Google Scholar 

  22. Wei T, Jia W, Qian Z, Zhao L, Yu Y, Li L, et al. Folic acid supports Pluripotency and reprogramming by regulating LIF/STAT3 and MAPK/ERK signaling. Stem Cells Dev. 2017;26(1):49–59. https://doi.org/10.1089/scd.2016.0091.

    Article  CAS  PubMed  Google Scholar 

  23. Huang X, He Z, Jiang X, Hou M, Tang Z, Zhen X, et al. Folic acid represses hypoxia-induced inflammation in THP-1 cells through inhibition of the PI3K/Akt/HIF-1alpha pathway. PLoS One. 2016;11(3):e0151553. https://doi.org/10.1371/journal.pone.0151553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhao M, Chen YH, Chen X, Dong XT, Zhou J, Wang H, et al. Folic acid supplementation during pregnancy protects against lipopolysaccharide-induced neural tube defects in mice. Toxicol Lett. 2014;224(2):201–8. https://doi.org/10.1016/j.toxlet.2013.10.021.

    Article  CAS  PubMed  Google Scholar 

  25. Longa EZ, Weinstein PR, Carlson S, Cummins R. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke. 1989;20(1):84–91.

    Article  CAS  Google Scholar 

  26. Kloner RA, Fishbein MC, Braunwald E, Maroko PR. Effect of propranolol on mitochondrial morphology during acute myocardial ischemia. Am J Cardiol. 1978;41(5):880–6.

    Article  CAS  Google Scholar 

  27. Candelario-Jalil E, Alvarez D, Merino N, Leon OS. Delayed treatment with nimesulide reduces measures of oxidative stress following global ischemic brain injury in gerbils. Neurosci Res. 2003;47(2):245–53.

    Article  CAS  Google Scholar 

  28. Shravah J, Wang B, Pavlovic M, Kumar U, Chen DD, Luo H, et al. Propofol mediates signal transducer and activator of transcription 3 activation and crosstalk with phosphoinositide 3-kinase/AKT. JAKSTAT. 2014;3(2):e29554-e. https://doi.org/10.4161/jkst.29554.

    Article  Google Scholar 

  29. Tu H-J, Lin T-H, Chiu Y-C, Tang C-H, Yang R-S, Fu W-M. Enhancement of placenta growth factor expression by oncostatin M in human rheumatoid arthritis synovial fibroblasts. J Cell Physiol. 2013;228(5):983–90. https://doi.org/10.1002/jcp.24244.

    Article  CAS  PubMed  Google Scholar 

  30. Liew SC. Folic acid and diseases - supplement it or not? Revista da Associacao Medica Brasileira (1992). 2016;62(1):90–100. https://doi.org/10.1590/1806-9282.62.01.90.

  31. Prevention of neural tube defects: results of the Medical Research Council Vitamin Study. MRC Vitamin Study Research Group. Lancet (London, England). 1991;338(8760):131–7.

    Article  Google Scholar 

  32. Chen H, Liu S, Ji L, Wu T, Ji Y, Zhou Y, et al. Folic acid supplementation mitigates Alzheimer’s disease by reducing inflammation: a randomized controlled trial. Mediat Inflamm. 2016;2016:5912146–10. https://doi.org/10.1155/2016/5912146.

    Article  CAS  Google Scholar 

  33. Shen L, Ji HF. Associations between Homocysteine, folic acid, vitamin B12 and Alzheimer's disease: insights from meta-analyses. J Alzheimer Dis. 2015;46(3):777–90. https://doi.org/10.3233/jad-150140.

    Article  CAS  Google Scholar 

  34. Aden E, Carlsson M, Poortvliet E, Stenlund H, Linder J, Edstrom M, et al. Dietary intake and olfactory function in patients with newly diagnosed Parkinson’s disease: a case-control study. Nutr Neurosci. 2011;14(1):25–31. https://doi.org/10.1179/174313211x12966635733312.

    Article  PubMed  Google Scholar 

  35. Duan W, Ladenheim B, Cutler RG, Kruman II, Cadet JL, Mattson MP. Dietary folate deficiency and elevated homocysteine levels endanger dopaminergic neurons in models of Parkinson’s disease. J Neurochem. 2002;80(1):101–10.

    Article  CAS  Google Scholar 

  36. Wu Y, Xu J, Xu J, Zheng W, Chen Q, Jiao D. Study on the mechanism of JAK2/STAT3 signaling pathway-mediated inflammatory reaction after cerebral ischemia. Mol Med Rep. 2018;17(4):5007–12. https://doi.org/10.3892/mmr.2018.8477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tang Y, Tong X, Li Y, Jiang G, Yu M, Chen Y, et al. JAK2/STAT3 pathway is involved in the protective effects of epidermal growth factor receptor activation against cerebral ischemia/reperfusion injury in rats. Neurosci Lett. 2018;662:219–26. https://doi.org/10.1016/j.neulet.2017.10.037.

    Article  CAS  PubMed  Google Scholar 

  38. Ben Haim L, Ceyzeriat K, Carrillo-de Sauvage MA, Aubry F, Auregan G, Guillermier M, et al. The JAK/STAT3 pathway is a common inducer of astrocyte reactivity in Alzheimer’s and Huntington’s diseases. J Neurosci. 2015;35(6):2817–29. https://doi.org/10.1523/jneurosci.3516-14.2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Liu X, Zhang X, Zhang J, Kang N, Zhang N, Wang H, et al. Diosmin protects against cerebral ischemia/reperfusion injury through activating JAK2/STAT3 signal pathway in mice. Neuroscience. 2014;268:318–27. https://doi.org/10.1016/j.neuroscience.2014.03.032.

    Article  CAS  PubMed  Google Scholar 

  40. Li Y, Zhang X, Cui L, Chen R, Zhang Y, Zhang C, et al. Salvianolic acids enhance cerebral angiogenesis and neurological recovery by activating JAK2/STAT3 signaling pathway after ischemic stroke in mice. J Neurochem. 2017;143(1):87–99. https://doi.org/10.1111/jnc.14140.

    Article  CAS  PubMed  Google Scholar 

  41. Satriotomo I, Bowen KK, Vemuganti R. JAK2 and STAT3 activation contributes to neuronal damage following transient focal cerebral ischemia. J Neurochem. 2006;98(5):1353–68. https://doi.org/10.1111/j.1471-4159.2006.04051.x.

    Article  CAS  PubMed  Google Scholar 

  42. Szczepanek K, Chen Q, Derecka M, Salloum FN, Zhang Q, Szelag M, et al. Mitochondrial-targeted signal transducer and activator of transcription 3 (STAT3) protects against ischemia-induced changes in the electron transport chain and the generation of reactive oxygen species. J Biol Chem. 2011;286(34):29610–20. https://doi.org/10.1074/jbc.M111.226209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Heusch G, Musiolik J, Gedik N, Skyschally A. Mitochondrial STAT3 activation and cardioprotection by ischemic postconditioning in pigs with regional myocardial ischemia/reperfusion. Circ Res. 2011;109(11):1302–8. https://doi.org/10.1161/circresaha.111.255604.

    Article  CAS  PubMed  Google Scholar 

  44. Li J, Lv H, Che YQ. Upregulated microRNA-31 inhibits oxidative stress-induced neuronal injury through the JAK/STAT3 pathway by binding to PKD1 in mice with ischemic stroke. 2019. https://doi.org/10.1002/jcp.29146.

  45. Cheng Z, Li L, Mo X, Zhang L, Xie Y, Guo Q, et al. Non-invasive remote limb ischemic postconditioning protects rats against focal cerebral ischemia by upregulating STAT3 and reducing apoptosis. Int J Mol Med. 2014;34(4):957–66. https://doi.org/10.3892/ijmm.2014.1873.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Liu X, Mei Z, Qian J, Zeng Y, Wang M. Puerarin partly counteracts the inflammatory response after cerebral ischemia/reperfusion via activating the cholinergic anti-inflammatory pathway. Neural Regen Res. 2013;8(34):3203–15. https://doi.org/10.3969/j.issn.1673-5374.2013.34.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hu S, Cheng D. Leptin attenuates cerebral ischemic injury in rats by modulating the mitochondrial electron transport chain via the mitochondrial STAT3 pathway. 2019;9(2):e01200. https://doi.org/10.1002/brb3.1200.

  48. Zhou B, Liu HY, Zhu BL. Protective role of SOCS3 modified bone marrow mesenchymal stem cells in hypoxia-induced injury of PC12 cells. J Mol Neurosci: MN. 2019;67(3):400–10. https://doi.org/10.1007/s12031-018-1243-7.

    Article  CAS  PubMed  Google Scholar 

  49. Gariboldi MB, Ravizza R, Molteni R, Osella D, Gabano E, Monti E. Inhibition of Stat3 increases doxorubicin sensitivity in a human metastatic breast cancer cell line. Cancer Lett. 2007;258(2):181–8. https://doi.org/10.1016/j.canlet.2007.08.019.

    Article  CAS  PubMed  Google Scholar 

  50. Park DW, Lyu JH, Kim JS, Chin H, Bae YS, Baek SH. Role of JAK2-STAT3 in TLR2-mediated tissue factor expression. J Cell Biochem. 2013;114(6):1315–21. https://doi.org/10.1002/jcb.24472.

    Article  CAS  PubMed  Google Scholar 

  51. Mackenzie GG, Huang L, Alston N, Ouyang N, Vrankova K, Mattheolabakis G, et al. Targeting mitochondrial STAT3 with the novel phospho-valproic acid (MDC-1112) inhibits pancreatic cancer growth in mice. PLoS One. 2013;8(5):e61532. https://doi.org/10.1371/journal.pone.0061532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Erlich TH, Yagil Z, Kay G, Peretz A, Migalovich-Sheikhet H, Tshori S, et al. Mitochondrial STAT3 plays a major role in IgE-antigen–mediated mast cell exocytosis. J Allergy Clin Immunol. 2014;134(2):460–9.e10. https://doi.org/10.1016/j.jaci.2013.12.1075.

    Article  CAS  PubMed  Google Scholar 

  53. Gough DJ, Koetz L, Levy DE. The MEK-ERK pathway is necessary for serine phosphorylation of mitochondrial STAT3 and Ras-mediated transformation. PLoS One. 2013;8(11):e83395-e. https://doi.org/10.1371/journal.pone.0083395.

    Article  CAS  Google Scholar 

  54. Lin W-F, Chen C-J, Chang Y-J, Chen S-L, Chiu I-M, Chen L. SH2B1beta enhances fibroblast growth factor 1 (FGF1)-induced neurite outgrowth through MEK-ERK1/2-STAT3-Egr1 pathway. Cell Signal. 2009;21(7):1060–72. https://doi.org/10.1016/j.cellsig.2009.02.009.

    Article  CAS  PubMed  Google Scholar 

  55. Kowalczyk JE, Zabłocka B. Protein kinases in mitochondria. Postepy Biochem. 2008;54(54):209–16.

    CAS  PubMed  Google Scholar 

  56. Huang G, Yan H, Ye S, Tong C, Ying QL. STAT3 phosphorylation at tyrosine 705 and serine 727 differentially regulates mouse ESC fates. Stem Cells. 2014;32(5):1149–60. https://doi.org/10.1002/stem.1609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Code Availability

Not applicable.

Funding

This work was financially supported by the National Natural Science Foundation of China (Grant No. 81874262).

Author information

Authors and Affiliations

Authors

Contributions

Study concept and design: Xumei Zhang, Zhiping Dong, and Xiaoshan Liang. Performed research: Zhiping Dong, Xiaoshan Liang, Suihui Luo, Huan Liu, Xuan Wang, and Na Sai. Analysis of data: Zhiping Dong, Qiang Zhang, Huan Liu, and Xuan Wang. Drafting of the manuscript: Xumei Zhang, Zhiping Dong, and Xiaoshan Liang.

Corresponding author

Correspondence to Xumei Zhang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Ethics Approval

All animal experimental procedures were approved by the Tianjin Medical University and performed in accordance with the guidelines of the National Institutes of Health on the care and use of animals.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Z., Liang, X., Zhang, Q. et al. Folic Acid Deficiency Enhances the Tyr705 and Ser727 Phosphorylation of Mitochondrial STAT3 in In Vivo and In Vitro Models of Ischemic Stroke. Transl. Stroke Res. 12, 829–843 (2021). https://doi.org/10.1007/s12975-020-00860-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-020-00860-7

Keywords

Navigation