Skip to main content
Log in

Ischemic Neuroprotectant PKCε Restores Mitochondrial Glutamate Oxaloacetate Transaminase in the Neuronal NADH Shuttle after Ischemic Injury

  • Original Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

The preservation of mitochondrial function is a major protective strategy for cerebral ischemic injuries. Previously, our laboratory demonstrated that protein kinase C epsilon (PKCε) promotes the synthesis of mitochondrial nicotinamide adenine dinucleotide (NAD+). NAD+ along with its reducing equivalent, NADH, is an essential co-factor needed for energy production from glycolysis and oxidative phosphorylation. Yet, NAD+/NADH are impermeable to the inner mitochondrial membrane and their import into the mitochondria requires the activity of specific shuttles. The most important neuronal NAD+/NADH shuttle is the malate-aspartate shuttle (MAS). The MAS has been implicated in synaptic function and is potentially dysregulated during cerebral ischemia. The aim of this study was to determine if metabolic changes induced by PKCε preconditioning involved regulation of the MAS. Using primary neuronal cultures, we observed that the activation of PKCε enhanced mitochondrial respiration and glycolysis in vitro. Conversely, inhibition of the MAS resulted in decreased oxidative phosphorylation and glycolytic capacity. We further demonstrated that activation of PKCε increased the phosphorylation of key components of the MAS in rat brain synaptosomal fractions. Additionally, PKCε increased the enzyme activity of glutamic oxaloacetic transaminase 2 (GOT2), an effect that was dependent on the import of PKCε into the mitochondria and phosphorylation of GOT2. Furthermore, PKCε activation was able to rescue decreased GOT2 activity induced by ischemia. These findings reveal novel protective targets and mechanisms against ischemic injury, which involves PKCε-mediated phosphorylation and activation of GOT2 in the MAS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW, Carson AP, et al. Heart disease and stroke statistics-2019 update: a report from the American Heart Association. Circulation. 2019;139(10):e56–66. https://doi.org/10.1161/CIR.0000000000000659.

    Article  PubMed  Google Scholar 

  2. Jackson CW, Escobar I, Xu J, Perez-Pinzon MA. Effects of ischemic preconditioning on mitochondrial and metabolic neruoprotection: 5′ adenosine monophosphate-activated protein kinase and sirtuins. Brain Circ. 2018;4(2):54–61. https://doi.org/10.4103/bc.bc_7_18.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kristin V. Ischemic conditioning in organ transplantation. Cond Med. 2018;1(4):212–9.

    Google Scholar 

  4. Cuomo O, Vinciguerra A, Cepparulo P, Anzilotti S, Brancaccio P, Formisano L, et al. Differences and similarities in neuroprotective molecular pathways activated by distinct preconditioning inducers. Cond Med. 2018;1(4):187–203.

    Google Scholar 

  5. Raval AP, Dave KR, Mochly-Rosen D, Sick TJ, Perez-Pinzon MA. Epsilon PKC is required for the induction of tolerance by ischemic and NMDA-mediated preconditioning in the organotypic hippocampal slice. J Neurosci. 2003;23(2):384–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Li J, Niu C, Han S, Zu P, Li H, Xu Q, et al. Identification of protein kinase C isoforms involved in cerebral hypoxic preconditioning of mice. Brain Res. 2005;1060(1–2):62–72. https://doi.org/10.1016/j.brainres.2005.08.047.

    Article  PubMed  CAS  Google Scholar 

  7. Dave KR, DeFazio RA, Raval AP, Torraco A, Saul I, Barrientos A, et al. Ischemic preconditioning targets the respiration of synaptic mitochondria via protein kinase C epsilon. J Neurosci. 2008;28(16):4172–82. https://doi.org/10.1523/JNEUROSCI.5471-07.2008.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Selvaraji S, Poh L, Natarajan V, Mallilankaraman K, Arumugam TV. Negative conditioning of mitochondrial dysfunction in age-related neurodegenerative diseases. Cond Med. 2019;2(1):30–9.

    PubMed  PubMed Central  Google Scholar 

  9. Bastian C, Politano S, Day J, McCray A, Brunet S, Baltan S. Mitochondrial dynamics and preconditioning in white matter. Cond Med. 2018;1(2):64–72.

    PubMed  PubMed Central  Google Scholar 

  10. Owens K, Park JH, Schuh R, Kristian T. Mitochondrial dysfunction and NAD(+) metabolism alterations in the pathophysiology of acute brain injury. Transl Stroke Res. 2013;4(6):618–34. https://doi.org/10.1007/s12975-013-0278-x.

    Article  PubMed  CAS  Google Scholar 

  11. Morris-Blanco KC, Cohan CH, Neumann JT, Sick TJ, Perez-Pinzon MA. Protein kinase C epsilon regulates mitochondrial pools of Nampt and NAD following resveratrol and ischemic preconditioning in the rat cortex. J Cereb Blood Flow Metab. 2014;34(6):1024–32. https://doi.org/10.1038/jcbfm.2014.51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Khoury N, Koronowski KB, Young JI, Perez-Pinzon MA. The NAD(+)-dependent family of sirtuins in cerebral ischemia and preconditioning. Antioxid Redox Signal. 2018;28(8):691–710. https://doi.org/10.1089/ars.2017.7258.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Lehninger AL. Phosphorylation coupled to oxidation of dihydrodiphosphopyridine nucleotide. J Biol Chem. 1951;190(1):345–59.

    PubMed  CAS  Google Scholar 

  14. McKenna MC, Waagepetersen HS, Schousboe A, Sonnewald U. Neuronal and astrocytic shuttle mechanisms for cytosolic-mitochondrial transfer of reducing equivalents: current evidence and pharmacological tools. Biochem Pharmacol. 2006;71(4):399–407. https://doi.org/10.1016/j.bcp.2005.10.011.

    Article  PubMed  CAS  Google Scholar 

  15. Lee CF, Chavez JD, Garcia-Menendez L, Choi Y, Roe ND, Chiao YA, et al. Normalization of NAD+ redox balance as a therapy for heart failure. Circulation. 2016;134(12):883–94. https://doi.org/10.1161/CIRCULATIONAHA.116.022495.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Llorente-Folch I, Rueda CB, Amigo I, del Arco A, Saheki T, Pardo B, et al. Calcium-regulation of mitochondrial respiration maintains ATP homeostasis and requires ARALAR/AGC1-malate aspartate shuttle in intact cortical neurons. J Neurosci. 2013;33(35):13957–71, 71a. https://doi.org/10.1523/JNEUROSCI.0929-13.2013.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Pardo B, Contreras L, Serrano A, Ramos M, Kobayashi K, Iijima M, et al. Essential role of aralar in the transduction of small Ca2+ signals to neuronal mitochondria. J Biol Chem. 2006;281(2):1039–47. https://doi.org/10.1074/jbc.M507270200.

    Article  PubMed  CAS  Google Scholar 

  18. Koronowski KB, Khoury N, Saul I, Loris ZB, Cohan CH, Stradecki-Cohan HM, et al. Neuronal SIRT1 (silent information regulator 2 homologue 1) regulates glycolysis and mediates resveratrol-induced ischemic tolerance. Stroke. 2017;48(11):3117–25. https://doi.org/10.1161/STROKEAHA.117.018562.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Khoury N, Xu J, Stegelmann SD, Jackson CW, Koronowski KB, Dave KR, et al. Resveratrol preconditioning induces genomic and metabolic adaptations within the long-term window of cerebral ischemic tolerance leading to bioenergetic efficiency. Mol Neurobiol. 2018;56:4549–65. https://doi.org/10.1007/s12035-018-1380-6.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Koronowski KB, Khoury N, Morris-Blanco KC, Stradecki-Cohan HM, Garrett TJ, Perez-Pinzon MA. Metabolomics based identification of SIRT5 and protein kinase C epsilon regulated pathways in brain. Front Neurosci. 2018;12:32. https://doi.org/10.3389/fnins.2018.00032.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Dimauro I, Pearson T, Caporossi D, Jackson MJ. A simple protocol for the subcellular fractionation of skeletal muscle cells and tissue. BMC Res Notes. 2012;5:513. https://doi.org/10.1186/1756-0500-5-513.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Inagaki K, Churchill E, Mochly-Rosen D. Epsilon protein kinase C as a potential therapeutic target for the ischemic heart. Cardiovasc Res. 2006;70(2):222–30. https://doi.org/10.1016/j.cardiores.2006.02.015.

    Article  PubMed  CAS  Google Scholar 

  23. Bright R, Mochly-Rosen D. The role of protein kinase C in cerebral ischemic and reperfusion injury. Stroke. 2005;36(12):2781–90. https://doi.org/10.1161/01.STR.0000189996.71237.f7.

    Article  PubMed  CAS  Google Scholar 

  24. Mayr M, Liem D, Zhang J, Li X, Avliyakulov NK, Yang JI, et al. Proteomic and metabolomic analysis of cardioprotection: interplay between protein kinase C epsilon and delta in regulating glucose metabolism of murine hearts. J Mol Cell Cardiol. 2009;46(2):268–77. https://doi.org/10.1016/j.yjmcc.2008.10.008.

    Article  PubMed  CAS  Google Scholar 

  25. Budas GR, Churchill EN, Disatnik MH, Sun L, Mochly-Rosen D. Mitochondrial import of PKCepsilon is mediated by HSP90: a role in cardioprotection from ischaemia and reperfusion injury. Cardiovasc Res. 2010;88(1):83–92. https://doi.org/10.1093/cvr/cvq154.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Thompson JW, Dave KR, Saul I, Narayanan SV, Perez-Pinzon MA. Epsilon PKC increases brain mitochondrial SIRT1 protein levels via heat shock protein 90 following ischemic preconditioning in rats. PLoS One. 2013;8(9):e75753. https://doi.org/10.1371/journal.pone.0075753.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Bunger R, Glanert S, Sommer O, Gerlach E. Inhibition by (aminooxy)acetate of the malate-aspartate cycle in the isolated working Guinea pig heart. Hoppe Seylers Z Physiol Chem. 1980;361(6):907–14.

    Article  PubMed  CAS  Google Scholar 

  28. Kauppinen RA, Sihra TS, Nicholls DG. Aminooxyacetic acid inhibits the malate-aspartate shuttle in isolated nerve terminals and prevents the mitochondria from utilizing glycolytic substrates. Biochim Biophys Acta. 1987;930(2):173–8.

    Article  PubMed  CAS  Google Scholar 

  29. Kim EJ, Raval AP, Hirsch N, Perez-Pinzon MA. Ischemic preconditioning mediates cyclooxygenase-2 expression via nuclear factor-kappa B activation in mixed cortical neuronal cultures. Transl Stroke Res. 2010;1(1):40–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Lange-Asschenfeldt C, Raval AP, Dave KR, Mochly-Rosen D, Sick TJ, Perez-Pinzon MA. Epsilon protein kinase C mediated ischemic tolerance requires activation of the extracellular regulated kinase pathway in the organotypic hippocampal slice. J Cereb Blood Flow Metab. 2004;24(6):636–45. https://doi.org/10.1097/01.WCB.0000121235.42748.BF.

    Article  PubMed  CAS  Google Scholar 

  31. Baines CP, Zhang J, Wang GW, Zheng YT, Xiu JX, Cardwell EM, et al. Mitochondrial PKCepsilon and MAPK form signaling modules in the murine heart: enhanced mitochondrial PKCepsilon-MAPK interactions and differential MAPK activation in PKCepsilon-induced cardioprotection. Circ Res. 2002;90(4):390–7. https://doi.org/10.1161/01.res.0000012702.90501.8d.

    Article  PubMed  CAS  Google Scholar 

  32. Jung YS, Jung YS, Kim MY, Kim E. Identification of caspase-independent PKCepsilon-JNK/p38 MAPK signaling module in response to metabolic inhibition in H9c2 cells. Jpn J Physiol. 2004;54(1):23–9.

    Article  PubMed  CAS  Google Scholar 

  33. Ping P, Zhang J, Huang S, Cao X, Tang XL, Li RC, et al. PKC-dependent activation of p46/p54 JNKs during ischemic preconditioning in conscious rabbits. Am J Phys. 1999;277(5):H1771–85. https://doi.org/10.1152/ajpheart.1999.277.5.H1771.

    Article  CAS  Google Scholar 

  34. Ping P, Zhang J, Zheng YT, Li RC, Dawn B, Tang XL, et al. Demonstration of selective protein kinase C-dependent activation of Src and Lck tyrosine kinases during ischemic preconditioning in conscious rabbits. Circ Res. 1999;85(6):542–50. https://doi.org/10.1161/01.res.85.6.542.

    Article  PubMed  CAS  Google Scholar 

  35. Ping P, Song C, Zhang J, Guo Y, Cao X, Li RC, et al. Formation of protein kinase C(epsilon)-Lck signaling modules confers cardioprotection. J Clin Invest. 2002;109(4):499–507. https://doi.org/10.1172/JCI13200.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Bae ON, Rajanikant K, Min J, Smith J, Baek SH, Serfozo K, et al. Lymphocyte cell kinase activation mediates neuroprotection during ischemic preconditioning. J Neurosci. 2012;32(21):7278–86. https://doi.org/10.1523/JNEUROSCI.6273-11.2012.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Juaristi I, Garcia-Martin ML, Rodrigues TB, Satrustegui J, Llorente-Folch I, Pardo B. ARALAR/AGC1 deficiency, a neurodevelopmental disorder with severe impairment of neuronal mitochondrial respiration, does not produce a primary increase in brain lactate. J Neurochem. 2017;142(1):132–9. https://doi.org/10.1111/jnc.14047.

    Article  PubMed  CAS  Google Scholar 

  38. Wang J, Bright R, Mochly-Rosen D, Giffard RG. Cell-specific role for epsilon- and betaI-protein kinase C isozymes in protecting cortical neurons and astrocytes from ischemia-like injury. Neuropharmacology. 2004;47(1):136–45. https://doi.org/10.1016/j.neuropharm.2004.03.009.

    Article  PubMed  CAS  Google Scholar 

  39. Mali Y, Zisapel N. VEGF up-regulation by G93A superoxide dismutase and the role of malate-aspartate shuttle inhibition. Neurobiol Dis. 2010;37(3):673–81. https://doi.org/10.1016/j.nbd.2009.12.005.

    Article  PubMed  CAS  Google Scholar 

  40. McKenna MC, Tildon JT, Stevenson JH, Boatright R, Huang S. Regulation of energy metabolism in synaptic terminals and cultured rat brain astrocytes: differences revealed using aminooxyacetate. Dev Neurosci. 1993;15(3–5):320–9. https://doi.org/10.1159/000111351.

    Article  PubMed  CAS  Google Scholar 

  41. Chouchani ET, Pell VR, Gaude E, Aksentijevic D, Sundier SY, Robb EL, et al. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature. 2014;515(7527):431–5. https://doi.org/10.1038/nature13909.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Stottrup NB, Lofgren B, Birkler RD, Nielsen JM, Wang L, Caldarone CA, et al. Inhibition of the malate-aspartate shuttle by pre-ischaemic aminooxyacetate loading of the heart induces cardioprotection. Cardiovasc Res. 2010;88(2):257–66. https://doi.org/10.1093/cvr/cvq205.

    Article  PubMed  CAS  Google Scholar 

  43. Dalgas C, Povlsen JA, Lofgren B, Erichsen SB, Botker HE. Effects of fatty acids on cardioprotection by pre-ischaemic inhibition of the malate-aspartate shuttle. Clin Exp Pharmacol Physiol. 2012;39(10):878–85. https://doi.org/10.1111/j.1440-1681.2012.05749.x.

    Article  PubMed  CAS  Google Scholar 

  44. Mitchell M, Cashman KS, Gardner DK, Thompson JG, Lane M. Disruption of mitochondrial malate-aspartate shuttle activity in mouse blastocysts impairs viability and fetal growth. Biol Reprod. 2009;80(2):295–301. https://doi.org/10.1095/biolreprod.108.069864.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Datta A, Akatsu H, Heese K, Sze SK. Quantitative clinical proteomic study of autopsied human infarcted brain specimens to elucidate the deregulated pathways in ischemic stroke pathology. J Proteome. 2013;91:556–68. https://doi.org/10.1016/j.jprot.2013.08.017.

    Article  CAS  Google Scholar 

  46. Rink C, Gnyawali S, Stewart R, Teplitsky S, Harris H, Roy S, et al. Glutamate oxaloacetate transaminase enables anaplerotic refilling of TCA cycle intermediates in stroke-affected brain. FASEB J. 2017;31(4):1709–18. https://doi.org/10.1096/fj.201601033R.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Campos F, Sobrino T, Ramos-Cabrer P, Argibay B, Agulla J, Perez-Mato M, et al. Neuroprotection by glutamate oxaloacetate transaminase in ischemic stroke: an experimental study. J Cereb Blood Flow Metab. 2011;31(6):1378–86. https://doi.org/10.1038/jcbfm.2011.3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Lofgren B, Povlsen JA, Rasmussen LE, Stottrup NB, Solskov L, Krarup PM, et al. Amino acid transamination is crucial for ischaemic cardioprotection in normal and preconditioned isolated rat hearts--focus on L-glutamate. Exp Physiol. 2010;95(1):140–52. https://doi.org/10.1113/expphysiol.2009.049452.

    Article  PubMed  CAS  Google Scholar 

  49. Della-Morte D, Raval AP, Dave KR, Lin HW, Perez-Pinzon MA. Post-ischemic activation of protein kinase C epsilon protects the hippocampus from cerebral ischemic injury via alterations in cerebral blood flow. Neurosci Lett. 2011;487(2):158–62. https://doi.org/10.1016/j.neulet.2010.10.013.

    Article  PubMed  CAS  Google Scholar 

  50. Morris-Blanco KC, Dave KR, Saul I, Koronowski KB, Stradecki HM, Perez-Pinzon MA. Protein kinase C epsilon promotes cerebral ischemic tolerance via modulation of mitochondrial Sirt5. Sci Rep. 2016;6:29790. https://doi.org/10.1038/srep29790.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Kumar V, Weng YC, Wu YC, Huang YT, Liu TH, Kristian T, et al. Genetic inhibition of PKCepsilon attenuates neurodegeneration after global cerebral ischemia in male mice. J Neurosci Res. 2019;97(4):444–55. https://doi.org/10.1002/jnr.24362.

    Article  PubMed  CAS  Google Scholar 

  52. Cole JT, Mitala CM, Kundu S, Verma A, Elkind JA, Nissim I, et al. Dietary branched chain amino acids ameliorate injury-induced cognitive impairment. Proc Natl Acad Sci U S A. 2010;107(1):366–71. https://doi.org/10.1073/pnas.0910280107.

    Article  PubMed  Google Scholar 

  53. Endo S, Ishiguro S, Tamai M. Possible mechanism for the decrease of mitochondrial aspartate aminotransferase activity in ischemic and hypoxic rat retinas. Biochim Biophys Acta. 1999;1450(3):385–96.

    Article  PubMed  CAS  Google Scholar 

  54. Hinkelbein J, Feldmann RE Jr, Kalenka A. Time-dependent alterations of cerebral proteins following short-term normobaric hyperoxia. Mol Cell Biochem. 2010;339(1–2):9–21. https://doi.org/10.1007/s11010-009-0365-1.

    Article  PubMed  CAS  Google Scholar 

  55. Allen EL, Ulanet DB, Pirman D, Mahoney CE, Coco J, Si Y, et al. Differential aspartate usage identifies a subset of cancer cells particularly dependent on OGDH. Cell Rep. 2016;17(3):876–90. https://doi.org/10.1016/j.celrep.2016.09.052.

    Article  PubMed  CAS  Google Scholar 

  56. Son J, Lyssiotis CA, Ying H, Wang X, Hua S, Ligorio M, et al. Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature. 2013;496(7443):101–5. https://doi.org/10.1038/nature12040.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Birsoy K, Wang T, Chen WW, Freinkman E, Abu-Remaileh M, Sabatini DM. An essential role of the mitochondrial electron transport chain in cell proliferation is to enable aspartate synthesis. Cell. 2015;162(3):540–51. https://doi.org/10.1016/j.cell.2015.07.016.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Fiermonte G, Walker JE, Palmieri F. Abundant bacterial expression and reconstitution of an intrinsic membrane-transport protein from bovine mitochondria. Biochem J. 1993;294(Pt 1):293–9. https://doi.org/10.1042/bj2940293.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Monne M, Miniero DV, Iacobazzi V, Bisaccia F, Fiermonte G. The mitochondrial oxoglutarate carrier: from identification to mechanism. J Bioenerg Biomembr. 2013;45(1–2):1–13. https://doi.org/10.1007/s10863-012-9475-7.

    Article  PubMed  CAS  Google Scholar 

  60. Zhao JJ, Xiao H, Zhao WB, Zhang XP, Xiang Y, Ye ZJ, et al. Remote ischemic postconditioning for ischemic stroke: a systematic review and meta-analysis of randomized controlled trials. Chin Med J. 2018;131(8):956–65. https://doi.org/10.4103/0366-6999.229892.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Zhao W, Meng R, Ma C, Hou B, Jiao L, Zhu F, et al. Safety and efficacy of remote ischemic preconditioning in patients with severe carotid artery stenosis before carotid artery stenting: a proof-of-concept, Randomized Controlled Trial. Circulation. 2017;135(14):1325–35. https://doi.org/10.1161/CIRCULATIONAHA.116.024807.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Clemer Abad for his assistance with the real-time PCR experiments.

Funding

This work was supported by the National Institutes of Health (NIH)/National Institute of Neurological Disorders and Stroke (NINDS) grants NS45676, NS097658, and NS34773 (to M.A.P.P.), and the American Heart Association (AHA) predoctoral award 19PRE34400074 (to J.X.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel A. Perez-Pinzon.

Ethics declarations

All institutional and national guidelines for the care and use of laboratory animals were followed. Animal usage and experimentation were approved by the Institutional Animal Care and Use Committee at the University of Miami and was in accordance with the US Public Health Service’s Policy on Humane Care and Use of Laboratory Animals.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Khoury, N., Jackson, C.W. et al. Ischemic Neuroprotectant PKCε Restores Mitochondrial Glutamate Oxaloacetate Transaminase in the Neuronal NADH Shuttle after Ischemic Injury. Transl. Stroke Res. 11, 418–432 (2020). https://doi.org/10.1007/s12975-019-00729-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-019-00729-4

Keywords

Navigation