Skip to main content

Advertisement

Log in

Characterization, optimization, and validation of environmental DNA (eDNA) markers to detect an endangered aquatic mammal

  • Methods and Resources Article
  • Published:
Conservation Genetics Resources Aims and scope Submit manuscript

Abstract

Environmental DNA (eDNA) represents a sensitive and efficient method for noninvasively sampling rare or otherwise hard to monitor taxa, potentially making it a powerful tool for conservation management. Still, this novel method can be affected by sampling protocols, abiotic characteristics of the microhabitat, the focal taxa itself, and primer design. Here we designed 12 species-specific primers for the critically endangered Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis) inhabiting the middle to lower Yangtze River in China to enable complementary population survey tools for conservation efforts. Representing primer pairs that amplify a range of DNA fragment sizes, we test these primers for sensitivity at amplifying finless porpoise DNA using conventional PCR from serial diluted blood samples, and from eDNA in aquaria and in the wild, including a nature reserve and a negative control site. We further investigated the capacity for these primers to detect finless porpoise DNA signals from water samples over a 30-day period. Our study presents which primers were successful at amplifying finless porpoise DNA from aquaria and in the wild, and further demonstrates no significant amplicon size effects on primer sensitivity or longevity. We summarize the impact primer design may have on eDNA applications in general and suggest future considerations for conservation efforts with the Yangtze finless porpoise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Barnes M, Turner CR, Jerde CL, Renshaw MA, Chadderton WL, Lodge DM (2014) Environmental conditions influence eDNA persistence in aquatic systems. Environ Sci Technol 48:1819–1827. doi:10.1021/es404734p

    Article  CAS  PubMed  Google Scholar 

  • Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW (2009) GenBank. Nucleic Acids Res 37 (Database issue):D26–D31. http://www.ncbi.nlm.nih.gov/genbank/. Accessed 15 Sept 2015

  • Bohmann K, Evans A, Gilbert MTP, Carvalho G, Creer S, Knapp M et al (2014) Environmental DNA for wildlife biology and biodiversity monitoring. Trends Ecol Evol 29:485

    Article  Google Scholar 

  • Davy CM, Kidd AG, Wilson CC (2015) Development and validation of environmental DNA (eDNA) markers for detection of freshwater turtles. PLoS One 10: e0130965. doi:10.1371/journal.pone.0130965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deagle BE, Eveson JP, Jarman SN (2006) Quantification of damage in DNA recovered from highly degraded samples—a case study on DNA in faeces. Front Zool 3:11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deiner K, Altermatt F (2014) Transport distance of invertebrate environmental DNA in a natural river. PLoS One 9(2):e88786. doi:10.1371/journal.pone.0088786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dejean T, Valentini A, Duparc A, Pellier-Cuit S, Pompanon F, Taberlet P et al (2011) Persistence of environmental DNA in freshwater ecosystems. PLoS One 6(8):e23398. doi:10.1371/journal.pone.00233986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dejean T, Valentini A, Miquel C, Taberlet P, Bellemain E, Miaud C (2012) Improved detection of an alien invasive species through environmental DNA barcoding, the example of the American bullfrog Lithobates catesbeianus. J Appl Ecol 49:953–959

    Article  Google Scholar 

  • Egan SP, Barnes MA, Hwang CT, Mahon AR, Feder JL, Ruggiero ST et al (2013) Rapid invasive species detection by combining environmental DNA with light transmission spectroscopy. Conserv Lett 6:402–409

    Article  Google Scholar 

  • Ficetola GF, Pansu J, Bonin A, Coissac E, Giguet-Covex C, Barba MD et al (2015) Replication levels, false presences and the estimation of the presence/absence from eDNA metabarcoding data. Mol Ecol Resour 15:543–556. doi:10.1111/1755-0998.12338

    Article  CAS  PubMed  Google Scholar 

  • Foote AD, Thomsen PF, Sveegaard S, Wahlberg M, Kielgast J, Kyhn LA et al (2012) Investigating the potential use of environmental DNA (eDNA) for genetic monitoring of marine mammals. PLoS One 7(8):e41781. doi:10.1371/journal.pone.0041781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukumoto S, Ushimaru A, Minamoto T (2015) A basin-scale application of environmental DNA assessment for rare endemic species and closely related exotic species in rivers: a case study of giant salamanders in Japan. J Appl Ecol 52:358–365. doi:10.1111/1365-2664.12392

    Article  CAS  Google Scholar 

  • Hunter ME, Oyler-McCance SJ, Dorazio RM, Fike JA, Smith BJ, Hunter CT et al (2015) Environmental DNA (eDNA) sampling improves occurrence and detection estimates of invasive burmese pythons. PLoS One 10(4):e0121655. doi:10.1371/journal.pone.0121655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jerde CL, Mahon AR, Chadderton WL, Lodge DM (2011) “Sight unseen” detection of rare aquatic species using environmental DNA. Conserv Lett 4:150–157

    Article  Google Scholar 

  • Kelly RP, Port JA, Yamahara KM, Martone RG, Lowell N, Thomsen PF et al (2014) Harnessing DNA to improve environmental management. Science 344:1455–1456. doi:10.1126/science.1251156

    Article  CAS  PubMed  Google Scholar 

  • Kimura S, Akamatsu T, Wang K, Wang D, Li SH, Dong SY et al (2009) Comparison of stationary acoustic monitoring and visual observation of finless porpoises. Acoust Soc Am 125:547–553. doi:10.1121/1.3021302

    Article  Google Scholar 

  • Laramie MB, Pilliod DS, Goldberg CSe (2015) Characterizing the distribution of an endangered salmonid using environmental DNA analysis. Biol Conserv 183:29–37. doi:10.1016/j.biocon.2014.11.025

    Article  Google Scholar 

  • Lennon JT (2007) Diversity and metabolism of marine bacteria on dissolved DNA. Appl Environ Microbiol 73(9):2799–2805. doi:10.1128/AEM.02674-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Liu YY, Tzika AC, Zhu Q, Van Doninck K, Milinkovitch MC (2011) Analysis of global and local population stratification of finless porpoises Neophocaena phocaenoides in Chinese waters. Mar Biol 158:1791–1804. doi:10.1007/s00227-011-1692-9

    Article  Google Scholar 

  • Mahon AR, Jerde CL, Galask M, Bergner JL, Chadderton WL, Lodge DM et al (2013) Validation of eDNA surveillance sensitivity for detection of Asian carps in controlled and field experiments. PLoS One 8(3):e58316. doi:10.1371/journal.pone.0058316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mei ZG, Huang SL, Hao YJ, Turvey ST, Gong WM, Wang D (2012) Accelerating population decline of Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis). Biol Conserv 153:192–200. doi:10.1016/j.biocon.2012.04.029

    Article  Google Scholar 

  • Ogram VV, Mathot ML, Harsh JB, Boyle J, Pettigrew CA Jr (1994) Effects of DNA polymer length on its adsorption to soils. Appl Environ Microbiol 60(2):393–396

    CAS  PubMed  PubMed Central  Google Scholar 

  • Piaggio AJ, Engeman RM, Hopken MW, Humphrey JS, Keacher KL, Bruce WE et al (2014) Detecting an elusive invasive species: a diagnostic PCR to detect burmese python in Florida waters and an assessment of persistence of environmental DNA. Mol Ecol Res 14:374–380. doi:10.1111/1755-0998.12180

    Article  CAS  Google Scholar 

  • Piggot MP (2016) Evaluating the effects of laboratory protocols on eDNA detection probability for an endangered freshwater fish. Ecol Evol. dio:10.1002/ece3.2083

    Google Scholar 

  • Pilliod DS, Goldberg CS, Arkle RS, Waits LP (2014) Factors influencing detection of eDNA from a stream-dwelling amphibian. Mol Ecol Resour 14:109–116. doi:10.1111/1755-0998.12159

    Article  CAS  PubMed  Google Scholar 

  • Rees HC, Maddison BC, Middleditch DJ, Patmore JR, Gough KC (2014) The detection of aquatic animal species using environmental DNA—a review of eDNA as a survey tool in ecology. J Appl Ecol 51:1450–1459. doi:10.1111/1365-2664.12306

    Article  CAS  Google Scholar 

  • Takahara T, Minamoto T, Yamanaka H, Doi H, Kawabata Z (2012) Estimation of fish biomass using environmental DNA. PLoS One 7:e35868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomsen PF, Kielgast J, Iversen LL, Møller PR, Rasmussen M, Willerslev E (2012a) Detection of a diverse marine fish fauna using environmental DNA from seawater samples. PLoS One 7(8):e41732. doi:10.1371/journal.pone.0041732

  • Thomsen PF, Kielgast J, Iversen LL, Wiuf C, Rasmussen M, Gilbert MTP et al (2012b) Monitoring endangered freshwater biodiversity using environmental DNA. Mol Ecol 21(11):2565–2573. doi:10.1111/j.1365-294X.2011.05418.x

  • Tuvshintulga B, Sivakumar T, Battsetseg B, Narantsatsaral S, Enkhtaivan B, Battur B et al (2015) The PCR detection and phylogenetic characterization of Babesia microti in questing ticks in Mongolia. Parasitol Int 64:527–532. doi:10.1016/j.parint.2015.07.007

    Article  CAS  PubMed  Google Scholar 

  • Wan X, Ruan R, McLaughlin RW, Hao Y, Zheng J, Wang D (2016) Fecal bacterial composition of the endangered Yangtze finless porpoise living under captive and semi-natural conditions. Curr Microbiol 72:306–314

    CAS  PubMed  Google Scholar 

  • Wang D (2009) Population status, threats and conservation of the Yangtze finless porpoise. Chin Sci Bull 54:3473–3484. doi:10.1007/s11434-009-0522-7

    CAS  Google Scholar 

  • Wang JY, Reeves R (2012) Neophocaena asiaeorientalis. The IUCN red list of threatened species 2012: e.T41754A17599353. doi:10.2305/IUCN.UK.2012.RLTS.T41754A17599353.en

  • Wang D, Turvey ST, Zhao X, Mei Z (2013) Neophocaena asiaeorientalis ssp. asiaeorientalis. The IUCN red list of threatened species 2013: e.T43205774A45893487. doi:10.2305/IUCN.UK.2013-1.RLTS.T43205774A45893487.en

  • Wei Z, Wang D, Zhang X, Zhao QZ, Wang KX, Kuang XA (2002) Population size, behavior, movement pattern and protection of Yangtze finless porpoise at Balijiang section of the Yangtze River. Resour Environ Yangtze Val 11: 427–432

    Google Scholar 

  • Wilcox TM, Mckelvey KS, Young MK, Jane SF, Lowe WH, Whiteley AR et al (2013) Robust detection of rare species using environmental DNA: the importance of primer specificity. PLoS One 8(3):e59520. doi:10.1371/journal.pone.0059520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilcox TM, Carim KJ, McKelvey KS, Young MK, Schwartz MK (2015) The dual challenges of generality and specificity when developing environmental DNA markers for species and subspecies of Oncorhynchus. PLoS One. doi:10.1371/journal.pone.0142008

  • Ye J, Coulouris G, Zaretskaya L, Cutcutache L, Rozen S, Madden TL (2012) Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinform 13:134. doi:10.1186/1471-2105-13-134

    Article  CAS  Google Scholar 

  • Zhang X, Liu RJ, Zhao QS, Zhang GC, Sei Z, Wang XQ et al (1993) The population of finless porpoise in the middle and lower reaches of Yangtze River. Acta Theriol Sin 13: 260–270

    Google Scholar 

  • Zhao X, Barlow J, Taylor BL, Pitman RL, Wang K, Wei W et al (2008) Abundance and conservation status of the Yangtze finless porpoise in the Yangtze River, China. Biol Conserv 141:3006–3018. doi:10.1016/j.biocon.2008.09.005

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank the National Natural Sciences Foundation of China (NSFC) and the Tongji University State Key Laboratory for Pollution Control and Resource Reuse for funding this research (provided to KAS), and the World Wide Fund for Nature, China, for their logistical assistance with sample collections and methodological consultations. We should also thank the staff of Tian e-Zhou Baiji National Nature Reserve and Wuhan Baiji Dolphinarium for providing help in sampling. Finally, we want to extend our thanks to the 3 anonymous reviewers for their insightful comments on a previous incarnation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathryn Stewart.

Additional information

Hongjuan Ma and Kathryn Stewart have contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, H., Stewart, K., Lougheed, S. et al. Characterization, optimization, and validation of environmental DNA (eDNA) markers to detect an endangered aquatic mammal. Conservation Genet Resour 8, 561–568 (2016). https://doi.org/10.1007/s12686-016-0597-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12686-016-0597-9

Keywords

Navigation