Skip to main content
Log in

A Simple Method to Establish the Relationship Between the Equilibrium Polarization Resistance and the Elementary Kinetic Parameters of an Electrocatalysed Reaction

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

A simple and rigorous methodology to establish the relationship between the faradaic equilibrium polarization resistance of an electrocatalytic reaction with the elementary kinetic parameters involved in the reaction mechanism is proposed. It was derived through an alternative method, which avoided the differentiation of the corresponding current-overpotential dependence. This formalism includes the cases where both, reactants and products, exhibit diffusion contributions. It is demonstrated that the equilibrium polarization resistance is the sum of both, faradaic and diffusion, contributions. Each diffusion term has a linear variation with the inverse of the limiting diffusion current density of the species involved. This behavior was exemplified with two different experimental data sets for the hydrogen electrode reaction, obtained on a rotating disc and microelectrodes, respectively.

Experimental equilibrium polarization resistance is the sum of faradaic (\( {R}_p^o \)) and diffusion (\( {R}_p^d \)) contributions. A simple and novel methodology is presented for the derivation of the relationship between \( {R}_p^o \) and the equilibrium reaction rates of the elementary steps (\( {v}_i^e \)). It is also demonstrated the linear variation of \( {R}_p^d \) with the inverse of the limiting diffusion current density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. E. Gileadi, Electrode kinetics for chemists, chemical engineers and materials scientists (VCH Publishers, New York, 1993), p. 261

    Google Scholar 

  2. J.O.’.M. Bockris, S.U.M. Khan, Surface electrochemistry: a molecular level approach (Plenum Press, New York, 1993), p. 313

    Book  Google Scholar 

  3. P.A. Christensen, A. Hamnett, Techniques and mechanisms in electrochemistry (Chapman & Hill, Oxford, 1994), p. 29

    Google Scholar 

  4. M.R. Gennero de Chialvo, A.C. Chialvo, Hydrogen diffusion effects on the kinetics of the hydrogen electrode reaction. Part I. Theoretical aspects. Phys. Chem. Chem. Phys. 6, 4009 (2004)

    Article  CAS  Google Scholar 

  5. P.M. Quaino, M.R. Gennero de Chialvo, A.C. Chialvo, Hydrogen electrode reaction: a complete kinetic description. Electrochim. Acta 52, 7396 (2007)

    Article  CAS  Google Scholar 

  6. R.G. Ehrenburg, Application of the stoichiometric number method to investigation of multistep reactions. J. Res. Inst. Catal. Hokkaido Univ. 28, 137 (1980)

    CAS  Google Scholar 

  7. M.R. Gennero de Chialvo, A.C. Chialvo, Exchange current density, electrocatalytic activity and volcano curve for the hydrogen electrode reaction: theoretical analysis. Curr. Topics Electrochem. 17, 41 (2012)

    CAS  Google Scholar 

  8. J. Horiuti, T. Nakamura, On the theory of heterogeneous catalysis. Adv. Catal. 17, 1 (1967)

    CAS  Google Scholar 

  9. R. Haase, Thermodynamics of irreversible processes (Dover, New York, 1990)

    Google Scholar 

  10. V.G. Levich, Physicochemical hydrodynamics (Prentice Hall, Englewood Cliffs, 1962), p. 102

    Google Scholar 

  11. R. Alkire, A.A. Mirarefi, The current distribution within tubular electrodes under laminar flow. J. Electrochem. Soc. 120, 1507 (1973)

    Article  CAS  Google Scholar 

  12. S. Chen, A. Kucernak, Electrocatalysis under conditions of high mass transport: Investigation of hydrogen oxidation on single submicron Pt particles supported on carbon. J. Phys. Chem. B 108, 13984 (2004)

    Article  CAS  Google Scholar 

  13. M.D. Arce, J.L. Fernandez, M.R. Gennero de Chialvo, A.C. Chialvo, Fabrication, characterization and application of graphite ring ultramicroelectrodes for kinetic studies of fuel cell reactions under high mass-transport rates. J. Electroanal. Chem. 642, 41 (2010)

    Article  CAS  Google Scholar 

  14. M.R. Gennero de Chialvo, A.C. Chialvo, The polarization resistance, exchange current density and stoichiometric number for the hydrogen evolution reaction: theoretical aspects. J. Electroanal. Chem. 415, 97 (1996)

    Article  Google Scholar 

  15. M.A. Montero, C.A. Marozzi, M.R. Gennero de Chialvo, A.C. Chialvo, Hydrogen electrode reaction: a general description of the equilibrium polarization resistance, 20th topical meeting of the International Society of Electrochemistry (ISE): advances in lithium and hydrogen electrochemical systems for energy conversion and storage. S2-025, Buenos Aires, (2017)

  16. C.A. Marozzi, M.R. Gennero de Chialvo, A.C. Chialvo, Criteria for the selection of the scan rate in the evaluation of the kinetic parameters of the hydrogen oxidation reaction by a potentiodynamic sweep. J. Electroanal. Chem. 748, 61 (2015)

    Article  CAS  Google Scholar 

  17. C.A. Marozzi, M.R. Canto, V. Costanza, A.C. Chialvo, Analysis of the use of voltammetric results as a steady state approximation to evaluate kinetic parameters of the hydrogen evolution reaction. Electrochim. Acta 51, 731 (2005)

    Article  CAS  Google Scholar 

  18. O. Seri, Y. Itoh, Differentiating polarization curve technique for determining the exchange current density of hydrogen electrode reaction. Electrochim. Acta 218, 345 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the financial support received from Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT, PICT 2014-2001); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, PIP 0311); and Universidad Nacional del Litoral (UNL, CAI+D 2016 PIC 018LI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abel C. Chialvo.

Appendix

Appendix

Reaction (3) can be decomposed into two mass transfer processes (towards and from the electrode surface) and the faradaic process that takes place on the electrode surface,

$$ {\displaystyle \begin{array}{c}{A}_{2\left(\mathrm{sol}\right)}\to {A}_{2\left(\mathrm{es}\right)}\kern0.5em \left(\mathrm{diffusion}\kern0.3em \mathrm{to}\kern0.3em \mathrm{electrode}\kern0.3em \mathrm{surface}\right)\kern2.5em \\ {}{A}_{2\left(\mathrm{es}\right)}\rightleftharpoons \kern0.5em 2\kern.2em {P}_{\left(\mathrm{es}\right)}+2\kern.2em {H}^{+}+2\kern.2em {e}^{-}\kern0.5em \left(\mathrm{faradaic}\kern0.34em \mathrm{reaction}\right)\kern1em \\ {}\begin{array}{cc}{P}_{\left(\mathrm{es}\right)}\to {P}_{\left(\mathrm{sol}\right)}& \left(\mathrm{diffusion}\kern0.3em \mathrm{from}\kern0.3em \mathrm{electrode}\kern0.3em \mathrm{surface}\right)\kern1.5em \end{array}\kern0.5em \end{array}} $$

The variation of Gibbs free electrochemical energy of reaction (\( \Delta {\overline{g}}_r \)) is:

$$ \Delta {\overline{g}}_r=2\ {\overline{\mu}}_{H^{+}}+2{\overline{\mu}}_{e^{-}}+2\ {\mu}_{P\left(\mathrm{sol}\right)}-{\mu}_{A_2\left(\mathrm{sol}\right)} $$
(30)

where \( {\overline{\mu}}_i \) and μ i are the electrochemical and chemical potential respectively of the species i.

Adding and subtracting μ i(es) (iA 2, P), Eq. (30) can be rewritten as:

$$ \Delta {\overline{g}}_r=\left(2{\overline{\mu}}_{H^{+}}+2{\overline{\mu}}_{e^{-}}+2{\mu}_{P\left(\mathrm{es}\right)}-{\mu}_{A_2\left(\mathrm{es}\right)}\right)+2\left({\mu}_{P\left(\mathrm{sol}\right)}-{\mu}_{P\left(\mathrm{es}\right)}\right)+\left({\mu}_{A_2\left(\mathrm{es}\right)}-{\mu}_{A_2\left(\mathrm{sol}\right)}\right) $$
(31)

where the three parentheses define \( \Delta {\overline{g}}_r^{\mathrm{es}} \), Δg P , and \( \Delta {g}_{A_2} \), respectively,

$$ \Delta {\overline{g}}_r=\Delta {\overline{g}}_r^{\mathrm{es}}+2\Delta {g}_P+\Delta {g}_{A_2}=-2 F\eta $$
(32)

Derivation of Eqs. (19), (20), and (21)

As the reaction rate increases, the surface concentration of the reactant decreases and that of the product increases. Consequently, a shift in the surface reaction equilibrium potential occurs. This change is given by the potential difference of the reactant (or product) concentration cell,

$$ Pt(L)/{A}_2\left({c}_{\left(\mathrm{sol}\right)}\right)/{P}_{\left(\mathrm{sol}\right)}/{A}_2\left({c}_{\left(\mathrm{es}\right)}\right)/ Pt(R) $$

where Pt(L) and Pt(R) are the left and right electrodes of the cell, respectively. The following reactions are verified:

$$ {A}_{2\left(\mathrm{sol}\right)}\left({c}_{\mathrm{sol}}\right)\rightleftharpoons {P}_{\left(\mathrm{sol}\right)}+2{H}_{\left(\mathrm{sol}\right)}^{+}+2\ {e}_L^{-} $$
(33a)
$$ {P}_{\left(\mathrm{sol}\right)}+2{H}_{\left(\mathrm{sol}\right)}^{+}+2\ {e}_R^{-}\rightleftharpoons {A}_{2\left(\mathrm{es}\right)}\left({c}_{\mathrm{es}}\right) $$
(33b)

Being the overall reaction of the cell,

$$ {A}_{2\left(\mathrm{sol}\right)}\left({c}_{\mathrm{sol}}\right)+2{e}_R^{-}\rightleftharpoons {A}_{2\left(\mathrm{es}\right)}\left({c}_{\mathrm{es}}\right)+2\ {e}_L^{-} $$
(34)

Applying the equilibrium condition \( \sum {\upsilon}_i{\overline{\mu}}_i=0 \), it is rapidly arrived to the following expression, which defines the concentration overpotential due to the reactant A 2 \( \left({\eta}_{A_2}^d\right) \),

$$ {\mu}_{A_{2\left(\mathrm{es}\right)}}-{\mu}_{A_{2\left(\mathrm{sol}\right)}}=\Delta {g}_{A_2}=-2F{\eta}_{A_2}^d= RTln\frac{c_{A_{2\left(\mathrm{es}\right)}}}{c_{A_{2\left(\mathrm{sol}\right)}}} $$
(35)

Thus,

$$ \frac{c_{A_{2\left(\mathrm{es}\right)}}}{c_{A_{2\left(\mathrm{sol}\right)}}}={e}^{-\Delta {g}_{A_2}/ RT} $$
(36)

Applying the Nernst model of the diffusion layer [1],

$$ \frac{f_{A_2}^d}{f_{A_{2L}}^d}=\left(1-\frac{c_{A_{2\left(\mathrm{es}\right)}}}{c_{A_{2\left(\mathrm{sol}\right)}}}\right) $$
(37)

Substituting Eq. (36) into Eq. (37) and applying MacLaurin series development, the following linear dependence is obtained:

$$ {f}_{A_2}^d=-\frac{f_{A_2L}^d}{RT}\Delta {g}_{A_2}\left({\eta}_{A_2}^d\right) $$
(38)

Equation (38) corresponds to the application of Eq. (13) to species A 2.

Furthermore, for the reaction product P, the concentration cell is:

$$ Pt(L)/{A}_{2\left(\mathrm{sol}\right)}/P\left({c}_{\left(\mathrm{sol}\right)}\right)/P\left({c}_{\left(\mathrm{es}\right)}\right)/{A}_{2\left(\mathrm{sol}\right)}/ Pt(R) $$

Operating in a similar way as in the previous case:

$$ {\mu}_{P_{\left(\mathrm{sol}\right)}}-{\mu}_{P_{\left(\mathrm{es}\right)}}=\Delta {g}_P=-F{\eta}_P^d= RTln\ \frac{c_{P_{\left(\mathrm{sol}\right)}}}{c_{P_{\left(\mathrm{es}\right)}}} $$
(39)

Finally, replacing Eqs. (35) and (39) into Eq. (32) and taking into account that \( \Delta {\overline{g}}_r^{es}=-2F{\eta}^{\mathrm{es}} \) [14], Eq. (32) can be rewritten as:

$$ {\eta}_{A_2}^d+{\eta}_P^d+{\eta}^{\mathrm{es}}=\eta $$
(40)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montero, M.A., Marozzi, C.A., Gennero de Chialvo, M.R. et al. A Simple Method to Establish the Relationship Between the Equilibrium Polarization Resistance and the Elementary Kinetic Parameters of an Electrocatalysed Reaction. Electrocatalysis 9, 409–415 (2018). https://doi.org/10.1007/s12678-017-0443-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-017-0443-1

Keywords

Navigation