Skip to main content

Advertisement

Log in

Synthesis and Characterization of ZrO2/C as Electrocatalyst for Oxygen Reduction to H2O2

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Electrogeneration of hydrogen peroxide (H2O2) has potential application in advanced oxidation processes. Amorphous carbon is well known as catalyst for oxygen reduction reaction (ORR) through two-electron pathway. However, modification of the carbon can improve its selectivity for the H2O2 electrogeneration. In the present study, we investigated the properties of ZrO2 nanoparticles supported on carbon black (Printex L6) as electrocatalyst for H2O2 production in acidic medium. The catalytic activity of ZrO2/C for oxygen reduction to H2O2 is higher than the catalytic activity of treated carbon black. The highest selectivity of the ZrO2/C catalyst for H2O2 production is attributable to the presence of oxygenated functional groups on its surface and consequently increase of the surface hydrophilicity in comparison with treated carbon black. This surface effect leads to highest H2O2 electrogeneration, which is shown as a high current efficiency (I(H2O2)%). In fact, increased H2O2 yields from 74.5 to 84.2% were observed for the treated carbon black and ZrO2/C catalysts, respectively, whereas the I(H2O2)% for the unmodified carbon black was 65.3%. Furthermore, the modification of carbon by ZrO2 nanoparticles shifted the ORR half-wave potential towards ca. 137 mV, indicating lower energy consumption for producing H2O2. Thus, the ZrO2/C nanoparticles are shown to be promising electrocatalysts for environmental applications.

Zirconium oxides on carbon black improved significantly the selectivity of the substrate to H2O2 electrogeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. Da Pozzo, L. Di Palma, C. Merli, E. Petrucci, An experimental comparison of a graphite electrode and a gas diffusion electrode for the cathodic production of hydrogen peroxide. J. Appl. Electrochem. 35, 413–419 (2005). doi:10.1007/s10800-005-0800-2

    Article  CAS  Google Scholar 

  2. E. Yeager, Electrocatalysts for O2 reduction. Electrochim. Acta 29, 1527–1537 (1984). doi:10.1016/0013-4686(84)85006-9

    Article  CAS  Google Scholar 

  3. E. Yeager, Dioxygen electrocatalysis: mechanisms in relation to catalyst structure. J. Mol. Catal. 38, 5–25 (1986). doi:10.1016/0304-5102(86)87045-6

    Article  CAS  Google Scholar 

  4. F.C. Moreira, R.A.R. Boaventura, E. Brillas, V.J.P. Vilar, Electrochemical advanced oxidation processes: a review on their application to synthetic and real wastewaters. Appl. Catal. B Environ. 202, 217–261 (2017). doi:10.1016/j.apcatb.2016.08.037

    Article  CAS  Google Scholar 

  5. M.H.M.T. Assumpção, R.F.B. De Souza, D.C. Rascio, J.C.M. Silva, M.L. Calegaro, I. Gaubeur, et al., A comparative study of the electrogeneration of hydrogen peroxide using Vulcan and Printex carbon supports. Carbon N. Y. 49, 1842–2851 (2011)

    Article  Google Scholar 

  6. J.C. Forti, R.S. Rocha, M.R.V. Lanza, R. Bertazzoli, Electrochemical synthesis of hydrogen peroxide on oxygen-fed graphite/PTFE electrodes modified by 2-ethylanthraquinone. J. Electroanal. Chem. 601, 63–67 (2007). doi:10.1016/j.jelechem.2006.10.023

    Article  CAS  Google Scholar 

  7. F. Xu, T. Song, Y. Xu, Y. Chen, S. Zhu, S. Shen, A new cathode using CeO2/MWNT for hydrogen peroxide synthesis through a fuel cell. J. Rare Earths 27, 128–133 (2009). doi:10.1016/S1002-0721(08)60206-9

    Article  Google Scholar 

  8. S. Marcotte, D. Villers, N. Guillet, L. Roue, J.P. Dodelet, Electroreduction of oxygen on Co-based catalysts: determination of the parameters affecting the two-electron transfer reaction in an acid medium. Electrochim. Acta 50, 179–188 (2004)

    Article  CAS  Google Scholar 

  9. S. Damyanova, P. Grange, B. Delmon, Surface characterization of zirconia-coated alumina and silica carriers. J. Catal. 168, 421–430 (1997). doi:10.1006/jcat.1997.1671

    Article  CAS  Google Scholar 

  10. A. Moraes, M.H.M.T. Assumpção, F.C. Simões, V.S. Antonin, M.R.V. Lanza, P. Hammer, et al., Surface and catalytical effects on treated carbon materials for hydrogen peroxide electrogeneration. Electrocatalysis 7, 60–69 (2016). doi:10.1007/s12678-015-0279-5

    Article  CAS  Google Scholar 

  11. T. Mittermeier, P. Madkikar, X. Wang, H.A. Gasteiger, M. Piana, ZrO 2 based oxygen reduction catalysts for PEMFCs: towards a better understanding. J. Electrochem. Soc. 163, F1543–F1552 (2016). doi:10.1149/2.0901614jes

    Article  CAS  Google Scholar 

  12. Y. Liu, S. Akimitsu Ishihara, N. Mitsushima, K. Kamiya, Ota, transition metal oxides as DMFC cathodes without platinum. J. Electrochem. Soc. 154, B664–B669 (2007)

    Article  CAS  Google Scholar 

  13. T. Iwazaki, H. Yang, R. Obinata, W. Sugimoto, Y. Takasu, Oxygen-reduction activity of silk-derived carbons. J. Power Sources 195, 5840–5847 (2010). doi:10.1016/j.jpowsour.2009.12.135

    Article  CAS  Google Scholar 

  14. M.H.M.T. Assumpção, A. Moraes, R.F.B. De Souza, I. Gaubeur, R.T.S. Oliveira, V.S. Antonin, et al., Low content cerium oxide nanoparticles on carbon for hydrogen peroxide electrosynthesis. Appl. Catal. A Gen. 411–412, 1–6 (2012). doi:10.1016/j.apcata.2011.09.030

    Article  Google Scholar 

  15. M.H.M.T. Assumpção, R.F.B. De Souza, R.M. Reis, R.S. Rocha, J.R. Steter, P. Hammer, et al., Low tungsten content of nanostructured material supported on carbon for the degradation of phenol. Appl. Catal. B Environ. 142–143, 479–486 (2013). doi:10.1016/j.apcatb.2013.05.024

    Article  Google Scholar 

  16. M.P. Pechini, N. Adams, Method of preparating lead and alkaline earth titanates and niobates and coating method using the same to form a capacitor, US Pat. 3330697. (1967)

  17. U.A. Paulus, T.J. Schmidt, H.A. Gasteiger, R.J. Behm, Oxygen reduction on a high-surface area Pt/Vulcan carbon catalyst: a thin-film rotating ring-disk electrode study. J. Electroanal. Chem. 495, 134–145 (2001). doi:10.1016/S0022-0728(00)00407-1

    Article  CAS  Google Scholar 

  18. J. Zhou, Y. Zu, A.J. Bard, Scanning electrochemical microscopy Part 39. The proton/hydrogen mediator system and its application to the study of the electrocatalysis of hydrogen oxidation. 491, 22–29 (2000)

  19. N. Diab, W. Schuhmann, Microelectrochemical visualization of oxygen consumption of single living cells. 19–32 (2013). doi:10.1039/c3fd00011g.

  20. A. V. Naumkin, A. Kraut-Vass, S.W. Gaarenstroom, C.J. Powell, NIST X-ray Photoelectron Spectroscopy Database. NIST Standard Database 20, Version 4.1, http:/srdata.nist.gov/XPS/, (n.d.)

  21. J.F. Carneiro, M.J. Paulo, M. Siaj, A.C. Tavares, M.R.V. Lanza, Nb2O5 nanoparticles supported on reduced graphene oxide sheets as electrocatalyst for the H2O2 electrogeneration. J. Catal. 332, 51–61 (2015). doi:10.1016/j.jcat.2015.08.027

    Article  CAS  Google Scholar 

  22. J.F. Carneiro, R.S. Rocha, P. Hammer, R. Bertazzoli, M.R.V. Lanza, Hydrogen peroxide electrogeneration in gas diffusion electrode nanostructured with Ta2O5. Appl. Catal. A Gen. 517, 161–167 (2016). doi:10.1016/j.apcata.2016.03.013

    Article  CAS  Google Scholar 

  23. R.B. Valim, R.M. Reis, P.S. Castro, A.S. Lima, R.S. Rocha, M. Bertotti, et al., Electrogeneration of hydrogen peroxide in gas diffusion electrodes modified with tert -butyl-anthraquinone on carbon black support, Carbon N. Y. 61, 236–244 (2013). doi:10.1016/j.carbon.2013.04.100.

  24. Y. Tan, C. Xu, G. Chen, X. Fang, N. Zheng, Q. Xie, Facile synthesis of manganese-oxide-containing mesoporous nitrogen-doped carbon for efficient oxygen reduction. Adv. Funct. Mater. 22, 4584–4591 (2012)

    Article  CAS  Google Scholar 

  25. A.J. Bard, L.R. Faulkner, Electrochemical methods: fundamentals and applications (New York, n.d.)

  26. F. Wang, S. Hu, Studies of electrochemical reduction of dioxygen with RRDE. Electrochim. Acta 51, 4228–4235 (2006)

    Article  CAS  Google Scholar 

  27. Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier, et al., Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 10, 780–786 (2011). doi:10.1038/nmat3087

    Article  CAS  Google Scholar 

  28. L. Zhou, M. Zhou, Z. Hu, Z. Bi, K.G. Serrano, Chemically modified graphite felt as an efficient cathode in electro-Fenton for p-nitrophenol degradation. 140, 376–383 (2014)

Download references

Acknowledgements

The authors acknowledge the financial support of Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq—grants 163689/2015-6, 160507/2011-1 and 470079/2013-4), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP—grants 2011/14314-1, 2016/01937-4) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos R. V. Lanza.

Electronic Supplementary Material

ESM 1

(DOCX 824 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carneiro, J.F., Trevelin, L.C., Lima, A.S. et al. Synthesis and Characterization of ZrO2/C as Electrocatalyst for Oxygen Reduction to H2O2 . Electrocatalysis 8, 189–195 (2017). https://doi.org/10.1007/s12678-017-0355-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-017-0355-0

Keywords

Navigation