Skip to main content
Log in

Facile synthesis of Ni-based oxides nanocatalyst: effect of calcination temperature on NRR properties of NiO

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

Compared with the traditional Haber Bosch process, green and pollution-free electrocatalytic nitrogen reduction (NRR) has received considerable attention in the electrocatalysis field in the last decade. To address the issue of its low reactivity as well as the existence of competitive reactions, efficient electrocatalysts are particularly important. In this paper, NiO nanomaterials were synthesized by a simple water bath reaction. The effect of different calcination temperatures on the structure of NiO catalyst and its catalytic activity was studied. Uniform NiO-600 nanoparticles (56 ± 9.3 nm) obtained at 600 ℃ showed the best electrocatalytic NRR activity with an NH3 yield of 12 μg h−1 mg−1 and a Faraday efficiency of 5.5% at -0.5V (vs.RHE). The small particle size of the nanoparticles provided more active sites and the oxygen-rich vacancies facilitated the adsorption and activation of N2, which improved the catalytic activity of NiO-600. This study highlights the need for calcination temperature regulation and the huge impact on catalyst structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data are available upon reasonable request.

References

  1. Wen J, Zuo LQ, Sun HD, Wu XW, Huang T, Liu ZC, Wang J, Liu LL, Wu YP, Liu X et al (2021) Nanomaterials for the electrochemical nitrogen reduction reaction under ambient conditions. Nanoscale Advances 3(19):5525–5541

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  2. Yang MQ, Wang MJ, Zhang MN, Sun X, Xuan XX (2023) Nanostructured carbon electrocatalysts for clean energy conversion and storage: a mini review on the structural impact. Frontiers in Materials 9:1131651

    Article  ADS  Google Scholar 

  3. Foster SL, Bakovic SIP, Duda RD, Maheshwari S, Milton RD, Minteer SD, Janik MJ, Renner JN, Greenlee LF (2018) Catalysts for nitrogen reduction to ammonia. Nat Catal 1(7):490–500

    Article  Google Scholar 

  4. Carreon ML (2019) Plasma catalytic ammonia synthesis: state of the art and future directions. J Phys D-Appl Phys 52(48):483001

    Article  CAS  Google Scholar 

  5. Martin AJ, Shinagawa T, Perez-Ramirez J (2019) Electrocatalytic reduction of nitrogen: from haber-bosch to ammonia artificial leaf. Chem 5(2):263–283

    Article  CAS  Google Scholar 

  6. Wang QR, Guo JP, Chen P (2019) Recent progress towards mild-condition ammonia synthesis. J Energy Chem 36:25–36

    Article  Google Scholar 

  7. Wan Y, Xu J, Lv R (2019) Heterogeneous electrocatalysts design for nitrogen reduction reaction under ambient conditions. Mater Today 27:69–90

    Article  CAS  Google Scholar 

  8. Shen P, Li X, Luo Y, Guo Y, Zhao X, Chu K (2022) High-efficiency N2 electroreduction enabled by Se-vacancy-rich WSe2–x in water-in-salt electrolytes. ACS Nano 16(5):7915–7925

    Article  CAS  PubMed  Google Scholar 

  9. Jiang JZ, Wang YJ, Wu J, Wang H, Zou YL, Zou J, Wang HT (2024) Charge transfer interfaces across black phosphorus/Co, N Co-doped carbon heterojunction for enhanced electrocatalytic water splitting. J Mater Sci Technol 178:171–178

    Article  Google Scholar 

  10. Lee DK, Wee SJ, Jang KJ, Han MK, Surendran S, Cho SY, Kim JY, Lee SK, Sim U (2021) 3D-printed cobalt-rich tungsten carbide hierarchical electrode for efficient electrochemical ammonia production. J Korean Ceram Soc 58:679–687

    Article  CAS  Google Scholar 

  11. Kim D, Surendran S, Janani G, Lim Y, Choi H, Han MK, Yuvaraj S, Kim TH, Kim JK, Sim U (2022) Nitrogen-impregnated carbon-coated TiO2 nanoparticles for N2 reduction to ammonia under ambient conditions. Mater Lett 314:131808

    Article  CAS  Google Scholar 

  12. Yang ML, Jin ZX, Cao XX, Wang XM, Ma HY, Pang HJ, Yang GX (2023) Polyoxometalates-derived ternary metal oxides electrocatalyst for N2 reduction under ambient conditions. Tungsten. https://doi.org/10.1007/s42864-023-00206-4

    Article  Google Scholar 

  13. Bin Shahid U, Chen YF, Gu S, Li WZ, Shao MH (2022) Electrochemical nitrogen reduction: an intriguing but challenging quest. Trends in Chemistry 4(2):142–156

    Article  Google Scholar 

  14. Cao N, Zheng G (2018) Aqueous electrocatalytic N2 reduction under ambient conditions. Nano Res 11(6):2992–3008

    Article  CAS  Google Scholar 

  15. Marinho AL, Comminges C, Habrioux A, Célérier S, Bion N, Morais C (2023) Reactivity of nitrogen atoms from ZiF-8 structure deposited over Ti3C2 MXene in the electrochemical nitrogen reduction reaction. Chem Commun 59(67):10133–10136

    Article  CAS  Google Scholar 

  16. Jiang JZ, Xiong ZG, Wang HT, Liao GD, Bai SS, Zou J, Wu PX, Zhang P, Li X (2022) Sulfur-doped g-C3N4/g-C3N4 isotype step-scheme heterojunction for photocatalytic H2 evolution. J Mater Sci Technol 118:15–24

    Article  CAS  Google Scholar 

  17. Zou J, Wu SL, Liu Y, Sun YJ, Cao Y, Hsu JP, Wee ATS, Jiang JZ (2018) An ultra-sensitive electrochemical sensor based on 2D g-C3N4/CuO nanocomposites for dopamine detection. Carbon 130:652–663

    Article  CAS  Google Scholar 

  18. Yang XJ, Xu BJ, Chen JG, Yang X (2023) Recent progress in electrochemical nitrogen reduction on transition metal nitrides. Chemsuschem 16(5):e202201715

    Article  CAS  PubMed  Google Scholar 

  19. Yang M, Chen YY, Wang HT, Zou YL, Wu PX, Zou J, Jiang JZ (2022) Solvothermal preparation of CeO2 nanoparticles-graphene nanocomposites as an electrochemical sensor for sensitive detecting pentachlorophenol. Carbon Lett 32(5):1277–1285

    Article  Google Scholar 

  20. Gou GC, Wei WJ, Yang JX, Liu JH, Liu Y, Li J, Shi K (2022) Effect of anion species on preparation and properties of pitch-based activated carbon fibers by in-situ catalytic activation of metal nanoparticles. Carbon Letters 32(6):1507–1518

    Article  Google Scholar 

  21. Wang LJ, Yang TY, Feng B, Xu XY, Shen YY, Li ZH, Jiang JZ (2023) Constructing dual electron transfer channels to accelerate CO2 photoreduction guided by machine learning and first-principles calculation. Chin J Catal 54:265–277

    Article  CAS  Google Scholar 

  22. Ma BY, Zhao HT, Li TS, Liu Q, Luo YS, Li CB, Lu SY, Asiri AM, Ma DW, Sun XP (2021) Iron-group electrocatalysts for ambient nitrogen reduction reaction in aqueous media. Nano Res 14(3):555–569

    Article  ADS  CAS  Google Scholar 

  23. Zhang G, Li X, Chen K, Guo Y, Ma D, Chu K (2023) Tandem electrocatalytic nitrate reduction to ammonia on MBenes. Angew Chem Int Ed 62(13):e202300054

    Article  CAS  Google Scholar 

  24. Tian Y, Chang B, Wang GH, Li LL, Gong LG, Wang B, Yuan RS, Zhou WJ (2022) Magnetron sputtering tuned “pi back-donation” sites over metal oxides for enhanced electrocatalytic nitrogen reduction. J Mater Chem A 10(6):2800–2806

    Article  CAS  Google Scholar 

  25. Du CF, Yang L, Tang KW, Fang W, Zhao XY, Liang QH, Liu XH, Yu H, Qi WH, Yan QY (2021) Ni nanoparticles/V4C3Tx MXene heterostructures for electrocatalytic nitrogen fixation. Mater Chem Front 5(5):2338–2346

    Article  CAS  Google Scholar 

  26. Bai F, Qu X, Li C, Liu S, Sun J, Chen X, Yang WS (2022) Nickel nanoflowers with controllable cation vacancy for enhanced electrochemical nitrogen reduction. ACS Appl Mater Interfaces 14(24):28033–28043

    Article  CAS  PubMed  Google Scholar 

  27. Wan YC, Zhou HJ, Zheng MY, Huang ZH, Kang FY, Li J, Lv RT (2021) Oxidation state modulation of bismuth for efficient electrocatalytic nitrogen reduction to ammonia. Adv Func Mater 31(30):2100300

    Article  CAS  Google Scholar 

  28. AbdelHamid AA, Yu Y, Yang J, Ying JY (2017) Generalized synthesis of metal oxide nanosheets and their application as Li-ion battery anodes. Adv Mater 29(32):1701427

    Article  Google Scholar 

  29. Kitano M, Kanbara S, Inoue Y, Kuganathan N, Sushko PV, Yokoyama T, Hara M, Hosono H (2015) Electride support boosts nitrogen dissociation over ruthenium catalyst and shifts the bottleneck in ammonia synthesis. Nat Commun 6:6731

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Chen JG, Crooks RM, Seefeldt LC, Bren KL, Bullock RM, Darensbourg MY, Holland PL, Hoffman B, Janik MJ, Jones AK et al (2018) Beyond fossil fuel-driven nitrogen transformations. Science 360(6391):eaar6611

    Article  PubMed  PubMed Central  Google Scholar 

  31. Nangan S, Ding Y, Alhakemy AZ, Liu Y, Wen Z (2021) Hybrid alkali-acid urea-nitrate fuel cell for degrading nitrogen-rich wastewater. Appl Catal B 286:119892

    Article  CAS  Google Scholar 

  32. Gao JQ, Xue JB, Jia SF, Shen QQ, Zhang XC, Jia HS, Liu XG, Li Q, Wu YC (2021) Self-doping surface oxygen vacancy-induced lattice strains for enhancing visible light-driven photocatalytic H2 evolution over black TiO2. ACS Appl Mater Interfaces 13(16):18758–18771

    Article  CAS  PubMed  Google Scholar 

  33. Guo WH, Zhang KX, Liang ZB, Zou RQ, Xu Q (2019) Electrochemical nitrogen fixation and utilization: theories, advanced catalyst materials and system design. Chem Soc Rev 48(24):5658–5716

    Article  CAS  PubMed  Google Scholar 

  34. Yang X, Tian Y, Mukherjee S, Li K, Chen X, Lv J, Liang S, Yan LK, Wu G, Zang HY (2023) Constructing oxygen vacancies via engineering heterostructured Fe3C/Fe3O4 catalysts for electrochemical ammonia synthesis. Angew Chem Int Ed 62(34):e202304797

    Article  CAS  Google Scholar 

  35. Yan ZF, Zuo ZJ, Lv XY, Li Z, Li Z, Huang W (2012) Adsorption of NO on MoO3 (010) surface with different location of terminal oxygen vacancy defects: A density functional theory study. Appl Surf Sci 258(7):3163–3167

    Article  ADS  CAS  Google Scholar 

  36. Zhu KY, Shi F, Zhu XF, Yang WS (2020) The roles of oxygen vacancies in electrocatalytic oxygen evolution reaction. Nano Energy 73:104761

    Article  CAS  Google Scholar 

  37. Chang B, Deng L, Wang S, Shi D, Ai Z, Jiang H, Shao Y, Zhang L, Shen J, Wu Y (2020) A vanadium-nickel oxynitride layer for enhanced electrocatalytic nitrogen fixation in neutral media. J Mater Chem A 8(1):91–96

    Article  CAS  Google Scholar 

  38. Guo W, Liang Z, Zhao J, Zhu B, Cai K, Zou R, Xu Q (2018) Hierarchical cobalt phosphide hollow nanocages toward electrocatalytic ammonia synthesis under ambient pressure and room temperature. Small Methods 2(12):1800204

    Article  Google Scholar 

  39. Li T, Xia J, Xian H, Chen Q, Xu K, Gu Y, Luo Y, Liu Q, Guo H, Traversa E (2022) Fe (III) grafted MoO3 nanorods for effective electrocatalytic fixation of atmospheric N2 to NH3. Int J Hydrogen Energy 47(6):3550–3555

    Article  CAS  Google Scholar 

  40. Wu X, Xia L, Wang Y, Lu W, Liu Q, Shi X, Sun X (2018) Mn3O4 nanocube: an efficient electrocatalyst toward artificial N2 fixation to NH3. Small 14(48):1803111

    Article  Google Scholar 

  41. Chen JY, Cheng H, Ding LX, Wang HH (2021) Competing hydrogen evolution reaction: a challenge in electrocatalytic nitrogen fixation. Mater Chem Front 5(16):5954–5969

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Open Project of Key Laboratory of Green Chemical Engineering Process of Ministry of Education (No. GCX2023006) and the Innovation Project of Key Laboratory of Novel Biomass-based Environmental and Energy Materials in Petroleum and Chemical Industry (No. 2022BEEA03).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Xiong or Hao Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 647 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Xing, X., Xiong, W. et al. Facile synthesis of Ni-based oxides nanocatalyst: effect of calcination temperature on NRR properties of NiO. Carbon Lett. (2024). https://doi.org/10.1007/s42823-023-00681-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42823-023-00681-2

Keywords

Navigation