Skip to main content
Log in

Influence of Step and Island Edges on Local Adsorption Properties: Hydrogen Adsorption on Pt Monolayer Island Modified Ru(0001) Electrodes

  • Original Article
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

The influence of steps and island edges on the local electronic structure of a (bi-)metallic single crystalline electrode surface and on the local, site-specific adsorption energy of adsorbed species, the so-called structural effects, was studied by periodic density functional theory based calculations, focusing on longer-range effects. Using hydrogen adsorption energies as a local probe, calculations were performed both for partly Pt monolayer covered planar Ru(0001) surfaces and for a stepped Ru(\(10\bar {19}\)) surface decorated with a row of Pt atoms. The calculations demonstrate that the steps/island edges affect not only the nearest neighbor adsorption sites but also more distant ones with the extent depending on the particular structure. This longer-range effect is in excellent agreement with recent temperature-programmed desorption and spectroscopy experiments (Hartmann et al. Phys. Chem. Chem. Phys. 14, 10919, 2012). For the interaction of water molecules with partly Pt monolayer covered Ru(0001), similar trends as in the hydrogen adsorption have been found. In addition, hydrogen adsorption energies as a function of coverage have been used to derive the hydrogen coverage as a function of the electrode potential, exhibiting a broad range of stable hydrogen adsorption structures.

Local adsorption properties of Pt monolayer island modified Ru(0001) electrodes are studied by first-principles calculations

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. K. Christmann, G. Ertl, Interaction of hydrogen with Pt(111): the role of atomic steps. Surf. Sci. 60, 365 (1976). doi:10.1016/0039-6028(76)90322-8

    Article  CAS  Google Scholar 

  2. B. Poelsema, G. Mechtersheimer, G. Comsa, The interaction of hydrogen with platinum(s)9(111) ×(111) studied with helium beam diffraction. Surf. Sci. 111, 519 (1981). doi:10.1016/0039-6028(81)90406-4

    Article  CAS  Google Scholar 

  3. B. Hammer, O. H. Nielsen, J.K. Nørskov, Structure sensitivity in adsorption: CO interaction with stepped and reconstructed Pt surfaces. Catal. Lett. 46, 31 (1997)

    Article  CAS  Google Scholar 

  4. P. Gambardella, Z. Sljivancanin, B. Hammer, M. Blanc, K. Kuhnke, K. Kern, Oxygen dissociation at Pt steps . Phys. Rev. Lett. 87, 056103 (2001)

    Article  CAS  Google Scholar 

  5. A. Groß, Adsorption at nanostructured surfaces from first principles. J. Comput. Theor. Nanosci. 5, 894 (2008)

    Article  Google Scholar 

  6. B. Hammer, J.K. Nørskov, Electronic factors determining the reactivity of metal surfaces. Surf. Sci. 343, 211 (1995)

    Article  CAS  Google Scholar 

  7. H.S. Taylor, A theory of the catalytic surface. Proc. R. Soc. Lond. A. 108, 105 (1925). doi:10.1098/rspa.1925.0061

    Article  CAS  Google Scholar 

  8. S. Dahl, A. Logadottir, R.C. Egeberg, J.H. Larsen, I. Chorkendorff, E. Törnqvist, J.K. Nørskov, Role of steps in N2 activation on Ru(0001). Phys. Rev. Lett. 83, 1814 (1999)

    Article  Google Scholar 

  9. L. Jacobse, A. den Dunnen, L.B.F. Juurlink, The molecular dynamics of adsorption and dissociation of O2 on Pt(553). J. Chem. Phys. 143, 014703 (2015). doi:10.1063/1.4923006

    Article  Google Scholar 

  10. C. Badan, R.G. Farber, Y. Heyrich, M.T.M. Koper, D.R. Killelea, L.B.F. Juurlink, Steptype selective oxidation of platinum surfaces. J. Phys. Chem. C. 120, 22927 (2016). doi:10.1021/acs.jpcc.6b05482

    Article  CAS  Google Scholar 

  11. A.M. Gómez-Marín, J.M. Feliu, Oxygen reduction on nanostructured platinum surfaces in acidic media: promoting effect of surface steps and ideal response of Pt(111). Catal. Today. 244, 172 (2015). doi:10.1016/j.cattod.2014.05.009

    Article  Google Scholar 

  12. H. Hartmann, T. Diemant, J. Bansmann, R.J. Behm, Interaction of CO and deuterium with bimetallic, monolayer Pt-island/film covered Ru(0001) surfaces. Phys. Chem. Chem. Phys. 14, 10919 (2012). doi:10.1039/C2CP41434A

    Article  CAS  Google Scholar 

  13. M.F. Juárez, E. Santos, Electronic anisotropy at vicinal Ag(11n) surfaces: work function changes induced by steps and hydrogen adsorption. J. Phys. Chem. C. 117(9), 4606 (2013). doi:10.1021/jp311531u

    Article  Google Scholar 

  14. M.F. Juárez, E. Santos, Electronic anisotropy at vicinal Ag(11n) surfaces: energetics of hydrogen adsorption. J. Phys. Chem. C. 120, 2109 (2016). doi:10.1021/acs.jpcc.5b08041

    Article  Google Scholar 

  15. A. Ruderman, M. Juarez, L. Avalle, G. Beltramo, M. Giesen, E. Santos, First insights of the electrocatalytical properties of stepped silver electrodes for the hydrogen evolution reaction. Electrochem. Commun. 34, 235 (2013). doi:10.1016/j.elecom.2013.06.023

    Article  CAS  Google Scholar 

  16. G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 54, 11169 (1996)

    Article  CAS  Google Scholar 

  17. P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B. 50, 17953 (1994)

    Article  Google Scholar 

  18. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996)

    Article  CAS  Google Scholar 

  19. S. Schnur, A. Groß, Challenges in the first-principles description of reactions in electrocatalysis. Catal. Today. 165, 129 (2011). doi:10.1016/j.cattod.2010.11.071

    Article  CAS  Google Scholar 

  20. A. Groß, Reactivity of bimetallic systems studied from first principles. Top. Catal. 37, 29 (2006)

    Article  Google Scholar 

  21. J. Greeley, J.K. Nørskov, L.A. Kibler, A.M. El-Aziz, D.M. Kolb, Hydrogen evolution over bimetallic systems - understanding the trends. Chem. Phys. Chem. 7, 1032 (2006)

    Article  CAS  Google Scholar 

  22. S. Sakong, C. Mosch, A. Groß, CO adsorption on Cu-Pd alloy surfaces: ligand versus ensemble effects. Phys. Chem. Chem. Phys. 9, 2216 (2007)

    Article  CAS  Google Scholar 

  23. A. Groß, Tailoring the reactivity of bimetallic overlayer and surface alloy systems. J. Phys. Condens. Matter. 21, 084205 (2009)

    Article  Google Scholar 

  24. A. Schlapka, M. Lischka, A. Groß, U. Käsberger, P. Jakob, Surface strain versus substrate interaction in heteroepitaxial metal layers: Pt on Ru(001). Phys. Rev. Lett. 91, 016101 (2003)

    Article  CAS  Google Scholar 

  25. M. Lischka, C. Mosch, A. Groß, Tuning catalytic properties of bimetallic surfaces: oxygen adsorption on pseudomorphic Pt/Ru overlayers. Electrochim. Acta. 52, 2219 (2007). doi:10.1016/j.electacta.2006.03.113

    Article  CAS  Google Scholar 

  26. P. Gambardella, M. Blanc, H. Brune, K. Kuhnke, K. Kern, One-dimensional metal chains on Pt vicinal surfaces. Phys. Rev. B. 61, 2254 (2000). doi:10.1103/PhysRevB.61.2254

    Article  CAS  Google Scholar 

  27. A. Groß. Theoretical surface science—a microscopic perspective, 2nd edn (Springer, Berlin, 2009)

    Google Scholar 

  28. A. Roudgar, A. Groß, Local reactivity of thin Pd overlayers on Au single crystals. J. Electroanal. Chem. 548, 121 (2003)

    Article  CAS  Google Scholar 

  29. J.K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J.R. Kitchin, T. Bligaard, H. Jónsson, Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B. 108, 17886 (2004). doi:10.1021/jp047349j

    Article  Google Scholar 

  30. S. Sakong, M. Naderian, K. Mathew, R.G. Hennig, A. Groß, Density functional theory study of the electrochemical interface between a Pt electrode and an aqueous electrolyte using an implicit solvent method. J. Chem. Phys. 142, 234107 (2015). doi:10.1063/1.4922615

    Article  Google Scholar 

  31. H.A. Gasteiger, N. Markovic, P.N. Ross, E.J. Cairns, Temperature-dependent methanol electro-oxidation on wellcharacterized Pt-Ru alloys. J. Electrochem. Soc. 141, 1795 (1994). doi:10.1149/1.2055007

    Article  CAS  Google Scholar 

  32. H.E. Hoster, T. Iwasita, Baumgärtner, W. Vielstich, Pt-Ru model catalysts for anodic methanol oxidation: inuence of structure and composition on the reactivity. Phys. Chem. Chem. Phys. 3, 337 (2001)

    Article  CAS  Google Scholar 

  33. R. Reichert, J. Schnaidt, Z. Jusys, R.J. Behm, The inuence of reactive side products on the electrooxidation of methanol—a combined in situ infrared spectroscopy and online mass spectrometry study. Phys. Chem. Chem. Phys. 16, 13780 (2014). doi:10.1039/C4CP01229A

    Article  CAS  Google Scholar 

  34. S. Sakong, A. Groß, The importance of the electrochemical environment in the electro-oxidation of methanol on Pt(111). ACS Catal. 6, 5575 (2016). doi:10.1021/acscatal.6b00931

    Article  CAS  Google Scholar 

  35. J.L. Zhang, M.B. Vukmirovic, Y. Xu, M. Mavrikakis, R.R. Adzic, Controlling the catalytic activity of platinum-monolayer electrocatalysts for oxygen reduction with different substrates. Angew. Chem. Int. Ed. 44, 2132 (2005)

    Article  CAS  Google Scholar 

  36. R.A. Sidik, A.B. Anderson, Density functional theory study of O2 electroreduction when bonded to a Pt dual site. J. Electroanal. Chem. 528, 69 (2002)

    Article  CAS  Google Scholar 

  37. J.X. Wang, N.M. Markovic, R.R. Adzic, Kinetic analysis of oxygen reduction on Pt(111) in acid solutions: intrinsic kinetic parameters and anion adsorption effects. J. Phys. Chem. B. 108, 4127 (2004)

    Article  CAS  Google Scholar 

  38. S. Brimaud, A.K. Engstfeld, O.B. Alves, H.E. Hoster, R.J. Behm, Oxygen reduction on structurally well defined, bimetallic PtRu surfaces: monolayer Pt x Ru1-x /Ru(0001) surface alloys versus Pt film covered Ru(0001). Top. Catal. 57, 222 (2014). doi:10.1007/s11244-013-0177-0

    Article  CAS  Google Scholar 

  39. F. Gossenberger, T. Roman, A. Groß, Hydrogen and halide co-adsorption on Pt(111) in an electrochemical environment: a computational perspective. Electrochim. Acta. 216, 152 (2016). doi:10.1016/j.electacta.2016.08.117

  40. A. Roudgar, A. Groß, Water bilayer on the Pd/Au(111) overlayer system: coadsorption and electric field effects. Chem. Phys. Lett. 409, 157 (2005)

  41. A. Roudgar, A. Groß, Hydrogen adsorption energies on bimetallic overlayer systems at the solid-vacuum and the solid-liquid interface. Surf. Sci. 597, 42 (2005)

    Article  CAS  Google Scholar 

  42. J. Rossmeisl, J.K. Nørskov, C.D. Taylor, M.J. Janik, M. Neurock, Calculated phase diagrams for the electrochemical oxidation and reduction of water over Pt(111). J. Phys. Chem. B. 110, 21833 (2006). doi:10.1021/jp0631735

    Article  CAS  Google Scholar 

  43. N.M. Markovic, P.N. Ross Jr., Surface science studies of model fuel cell electrocatalysts. Surf. Sci. Rep. 45, 117 (2002)

    Article  CAS  Google Scholar 

  44. H.E. Hoster, O.B. Alves, M.T.M. Koper, Tuning adsorption via strain and vertical ligand effects. ChemPhysChem. 11, 1518 (2010). doi:10.1002/cphc.200900500

    Article  CAS  Google Scholar 

  45. J.M. Fischer, D. Mahlberg, T. Roman, A. Groß, Water adsorption on bimetallic PtRu/Pt(111) surface alloys. Proc. R. Soc. A. 472, 20160618 (2016). doi:10.1098/rspa.2016.0618

    Article  Google Scholar 

  46. X. Lin, A. Groß, First-principles study of the water structure on flat and stepped gold surfaces. Surf. Sci. 606, 886 (2012)

    Article  CAS  Google Scholar 

  47. A. Groß, F. Gossenberger, X. Lin, M. Naderian, S. Sakong, T. Roman, Water structures at metal electrodes studied by ab initio molecular dynamics simulations. J. Electrochem. Soc. 161, E3015 (2014). doi:10.1149/2.003408jes

    Article  Google Scholar 

Download references

Acknowledgments

This research has been supported by the German Research Foundation (DFG) through contract GR 1503/22-2 and BE 1201/18-2 within the DFG Research Unit FOR 1376. Computer time has been provided by the state of Baden-Württemberg through the bwHPC project and the Germany Research Foundation (DFG) through grant number INST 40/467-1 FUGG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel Groß.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakong, S., Fischer, J.M., Mahlberg, D. et al. Influence of Step and Island Edges on Local Adsorption Properties: Hydrogen Adsorption on Pt Monolayer Island Modified Ru(0001) Electrodes. Electrocatalysis 8, 530–539 (2017). https://doi.org/10.1007/s12678-017-0354-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-017-0354-1

Keywords

Navigation