Skip to main content
Log in

The “Particle Proximity Effect” in Three Dimensions: a Case Study on Vulcan XC 72R

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

The “particle proximity effect” is a hypothesis claiming that Pt nanoparticles have higher ORR activity when they get closer to one another. In order to put this hypothesis under scrutiny, the “tool-box” approach was investigated in each process step by electron microscopy, ICP, and surface science methods. It is shown that particle size stability is brought about by a NaCl shell which can effectively be removed by washing with water. I.e., the “tool-box” synthesis with an additional washing step produces clean, closely spaced, and well-separated particles with interparticle distances necessary for the effect to occur. Despite this powerful synthesis route, a conclusive proof of the “proximity effect” could not be obtained. This is due to difficulties with catalyst film formation at higher platinum loadings on Vulcan XC 72R, suggesting that film deposition and drying methods have to be optimized for each catalyst loading separately and that a holistic approach is not very realistic.

Sometimes less is more: Oxygen reduction catalysts on Vulcan XC 72R with high Pt loading (> 10 %) show unfavorable film qualities on glassy carbon tips and cannot be evaluated for their kinetic current and specitic activities (extensive coffee ring formation) while for lower loadings reliable values can be obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Scheme 3
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M. Nesselberger, M. Roefzaad, R. Fayçal Hamou, P. Ulrich Biedermann, F.F. Schweinberger, S. Kunz, K. Schloegl, G.K.H. Wiberg, S. Ashton, U. Heiz, K.J.J. Mayrhofer, M. Arenz, Nat. Mater. 12, 919 (2013)

    Article  CAS  Google Scholar 

  2. U. Heiz, F. Vanolli, L. Trento, W.-D. Schneider, Rev. Sci. Instrum. 68, 1986 (1997)

    Article  CAS  Google Scholar 

  3. T.J. Schmidt, H.A. Gasteiger, G.D. Stäb, P.M. Urban, D.M. Kolb, R.J. Behm, J. Electrochem. Soc. 145, 2354 (1998)

    Article  CAS  Google Scholar 

  4. S. Kunz, K. Hartl, M. Nesselberger, F.F. Schweinberger, G. Kwon, M. Hanzlik, K.J.J. Mayrhofer, U. Heiz, M. Arenz, Phys. Chem. Chem. Phys. 12, 10288 (2010)

    Article  CAS  Google Scholar 

  5. S. Proch, M. Wirth, H.S. White, S.L. Anderson, J. Am. Chem. Soc. 135, 3073 (2013)

    Article  CAS  Google Scholar 

  6. G. Kwon, G.A. Ferguson, C.J. Heard, E.C. Tyo, C. Yin, J. DeBartolo, S. Seifert, R.E. Winans, A.J. Kropf, J. Greeley, R.L. Johnston, L.A. Curtiss, M.J. Pellin, S. Vajda, ACS Nano 7, 5808 (2013)

    Article  CAS  Google Scholar 

  7. A. von Weber, E.T. Baxter, H.S. White, S.L. Anderson, J. Phys. Chem. C 119, 11160 (2015)

    Article  Google Scholar 

  8. A. von Weber, E.T. Baxter, S. Proch, M.D. Kane, M. Rosenfelder, H.S. White, S.L. Anderson, Phys. Chem. Chem. Phys. 17, 17601 (2015)

    Article  Google Scholar 

  9. M.K. Debe, Nature 486, 43 (2012)

    Article  CAS  Google Scholar 

  10. J. Speder, I. Spanos, A. Zana, J.J.K. Kirkensgaard, K. Mortensen, L. Altmann, M. Bäumer, M. Arenz, Surf. Sci. 631, 278 (2015)

    Article  CAS  Google Scholar 

  11. J. Speder, L. Altmann, M. Baumer, J.J.K. Kirkensgaard, K. Mortensen, M. Arenz, RSC Adv. 4, 14971 (2014)

    Article  CAS  Google Scholar 

  12. Y. Wang, J. Ren, K. Deng, L. Gui, Y. Tang, Chem. Mater. 12, 1622 (2000)

    Article  Google Scholar 

  13. J. Speder, L. Altmann, M. Roefzaad, M. Baumer, J.J.K. Kirkensgaard, K. Mortensen, M. Arenz, Phys. Chem. Chem. Phys. 15, 3602 (2013)

    Article  CAS  Google Scholar 

  14. E. Fabbri, S. Taylor, A. Rabis, P. Levecque, O. Conrad, R. Kötz, T.J. Schmidt, Chem. Cat. Chem. 6, 1410 (2014)

    CAS  Google Scholar 

  15. G.A. Tritsaris, J. Greeley, J. Rossmeisl, J.K. Nørskov, Catal. Lett. 141, 909 (2011)

    Article  CAS  Google Scholar 

  16. J. Greeley, J. Rossmeisl, A. Hellmann, J.K. Norskov, Z. Phys. Chem. 221, 1209 (2009)

    Article  Google Scholar 

  17. F.J. Perez-Alonso, D.N. McCarthy, A. Nierhoff, P. Hernandez-Fernandez, C. Strebel, I.E.L. Stephens, J.H. Nielsen, I. Chorkendorff, Angew. Chem. Int. Ed. 51, 4641 (2012)

    Article  CAS  Google Scholar 

  18. H. Yano, J. Inukai, H. Uchida, M. Watanabe, P.K. Babu, T. Kobayashi, J.H. Chung, E. Oldfield, A. Wieckowski, Phys. Chem. Chem. Phys. 8, 4932 (2006)

    Article  CAS  Google Scholar 

  19. M. Shao, A. Peles, K. Shoemaker, Nano Lett. 11, 3714 (2011)

    Article  CAS  Google Scholar 

  20. X.-Q. Gong, A. Selloni, O. Dulub, P. Jacobson, U. Diebold, J. Am. Chem. Soc. 130, 370 (2008)

    Article  CAS  Google Scholar 

  21. C. Bock, C. Paquet, M. Couillard, G.A. Botton, B.R. MacDougall, J. Am. Chem. Soc. 126, 8028 (2004)

    Article  CAS  Google Scholar 

  22. N.P. Subramanian, S.P. Kumaraguru, H. Colon-Mercado, H. Kim, B.N. Popov, T. Black, D.A. Chen, J. Power Sources 157, 56 (2006)

    Article  CAS  Google Scholar 

  23. F.J. Vidal-Iglesias, R.M. Arán-Ais, J. Solla-Gullón, E. Herrero, J.M. Feliu, ACS Catal. 2, 901 (2012)

    Article  CAS  Google Scholar 

  24. I. Takahashi, S.S. Kocha, J. Power Sources 195, 6312 (2010)

    Article  CAS  Google Scholar 

  25. K.J.J. Mayrhofer, B.B. Blizanac, M. Arenz, V.R. Stamenkovic, P.N. Ross, N.M. Markovic, J. Phys. Chem. B 109, 14433 (2005)

    Article  CAS  Google Scholar 

  26. Y. Garsany, O.A. Baturina, K.E. Swider-Lyons, S.S. Kocha, Anal. Chem. 82, 6321 (2010)

    Article  CAS  Google Scholar 

  27. Y. Garsany, I.L. Singer, K.E. Swider-Lyons, J. Electroanal. Chem. 662, 396 (2011)

    Article  CAS  Google Scholar 

  28. K.J.J. Mayrhofer, D. Strmcnik, B.B. Blizanac, V. Stamenkovic, M. Arenz, N.M. Markovic, Electrochim. Acta 53, 3181 (2008)

    Article  CAS  Google Scholar 

  29. H.A. Gasteiger, S.S. Kocha, B. Sompalli, F.T. Wagner, Appl. Catal. B. 56, 9 (2005)

    Article  CAS  Google Scholar 

  30. M. Nesselberger, S. Ashton, J.C. Meier, I. Katsounaros, K.J.J. Mayrhofer, M. Arenz, J. Am. Chem. Soc. 133, 17428 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

TEM micrographs recorded by Yusuke Akimoto, ICP-OES analysis by Satoru Kosaka, and HR-SEM images taken by Juntaro Seki are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Proch.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 7195 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Proch, S., Kodama, K., Inaba, M. et al. The “Particle Proximity Effect” in Three Dimensions: a Case Study on Vulcan XC 72R. Electrocatalysis 7, 249–261 (2016). https://doi.org/10.1007/s12678-016-0302-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-016-0302-5

Keywords

Navigation