Skip to main content

Advertisement

Log in

The Effects of Intranasal Implantation of Mesenchymal Stem Cells on Nitric Monoxide Levels in the Hippocampus, Control of Cognitive Functions, and Motor Activity in a Model of Cerebral Ischemia in Rats

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Hypoxia occurs in situations of disbalance between metabolic needs and the supply of oxygen to organs and tissues of the body. In this regard, tissue hypoxia and ischemia are essential components of the pathogenesis of many diseases. One of the promising areas of research into the mechanisms of ischemia is attempting to weaken the negative effect of hypoxia and ischemia in the brain by using a variety of techniques that activate neuroprotective mechanisms. Here, we aimed to assess the dynamics of restoration of motor activity control in an experimental model of ischemic stroke in rats (cerebral ischemia, CI) after intranasal perineural implantation of mesenchymal stem cells into the receptive field of the olfactory nerve. It was found that the perineural administration of MSCs to rats in the acute period of cerebral ischemia was accompanied by clear signs of recovery of cognitive and motor functions within 1 and 3 days after the operation. On the seventh day after ischemia modeling, rats with the introduction of MSCs had no distinctive features in the control of motor activity compared to the period before the operation in the same rats. In the hippocampus of rats after modeling ischemia, a significant decrease in the content of NO by about 50% relative to the initial level is observed after 1 day. In the hippocampus of rats in which ischemia was modeled with simultaneous intranasal administration of MSC, a significant decrease in NO content by 39% relative to the initial level was also observed after 1 day. The content of NO increases slightly, but the difference in the level of NO relative to ischemic rats was not significant. The copper content in the hippocampus in the rats of these two groups did not change. There was a tendency to increase the efficiency of the antioxidant system 1 day after ischemia in both studied groups, and this effect was more pronounced with intranasal administration of MSC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Lo, E. H., Dalkara, T., & Moskowitz, M. A. (2003). Mechanisms, challenges & opportunities in stroke. Nature Reviews Neuroscience, 4(5), 399–415. https://doi.org/10.1038/nrn1106

    Article  Google Scholar 

  2. Michiels, C. (2004). Physiological and pathological responses to hypoxia. American Journal of Pathology, 164(6), 1875–1882. https://doi.org/10.1016/S0002-9440(10)63747-9

    Article  Google Scholar 

  3. Goryacheva, A. V., Barskov, I. V., Downey, H. F., & Manukhina, E. B. (2021). Adaptation to intermittent hypoxia prevents the decrease in cerebral vascular density in rats with experimental Alzheimer’s disease. Regional blood circulation and microcirculation, 20(2), 59–64. https://doi.org/10.24884/1682-6655-2021-20-2-59-64. In Russ.

    Article  Google Scholar 

  4. Donnan, G. A., Fisher, M., Macieod, M., & Davis, S. M. (2008). Stroke. Lancet, 371, 1612–1623. https://doi.org/10.1016/S0140-6736(08)60694-7

    Article  Google Scholar 

  5. Reutov, V. P., Samosudova, N. V., & Sorokina, E. G. (2019). A model of glutamate neurotoxicity and mechanisms of the development of the typical pathological process. Biophysics, 64(2), 233–250.

    Article  Google Scholar 

  6. Wierónska, J. M., Ciéslik, P., & Kalinowski, L. (2021). Nitric oxide-dependent pathways as critical factors in the consequences and recovery after brain ischemic hypoxia. Biomolecules, 11(8), 1097. https://doi.org/10.3390/biom11081097

    Article  Google Scholar 

  7. Manukhina, E. B., Downey, H. F., & Mallet, R. T. (2006). Role of nitric oxide in cardiovascular adaptation to intermittent hypoxia. Experimental Biology and Medicine, 231, 343–365. https://doi.org/10.1177/153537020623100401

    Article  Google Scholar 

  8. Voronina, T. A. (2016). The role of hypoxia in stroke and convulsive states. Antihypoxants. Reviews on Clinical Pharmacology and Drug Therapy, 14(1), 63–70. https://doi.org/10.17816/RCF14163-70

    Article  Google Scholar 

  9. Manukhina, E. B., Tseilikman, V. E., Karpenko, M. N., Pestereva, N. S., Tseilikman, O. B., Komelkova, M. V., Kondashevskaya, M. V., Goryacheva, A. V., Lapshin, M. S., Platkovskii, P. O., Sarapultsev, A. P., Alliluev, A. V., & Downey, H. F. (2020). Intermittent hypoxic conditioning alleviates post-traumatic stress disorder-induced damage and dysfunction of rat visceral organs and brain. International Journal of Molecular Sciences, 21(1), 345. https://doi.org/10.3390/ijms21010345

    Article  Google Scholar 

  10. Wojtasz, I., Tomski, A., & Kaźmierski, R. (2022). Association between nocturnal oxygen desaturation and ischaemic stroke outcomes. Neurologia i Neurochirurgia Polska, 56(3), 267–275. https://doi.org/10.5603/PJNNS.a2022.0033

    Article  Google Scholar 

  11. Bolanos, J., & Almeida, A. (1999). Roles of nitric oxide in brain hypoxia-ischemia. Biochimica et Biophysica Acta, 1411, 415–436. https://doi.org/10.1016/s0005-2728(99)00030-4

    Article  Google Scholar 

  12. Manukhina, E. B., Malyshev, I. Y., Smirin, B. V., Mashina, S. Y., Saltykova, V. A., & Vanin, A. F. (1999). Production and storage of nitric oxide in adaptation to hypoxia. Nitric Oxide, 3(5), 393–401. https://doi.org/10.1006/niox.1999.0244

    Article  Google Scholar 

  13. Deryagin, O. G., Gavrilova, S. A., Gainutdinov, Kh. L., Golubeva, A. V., Andrianov, V. V., Yafarova, G. G., Buravkov, S. V., & Koshelev, V. B. (2017). Molecular bases of brain preconditioning. Frontiers in Neuroscence, 11, 427. https://doi.org/10.3389/fnins.2017.00427

    Article  Google Scholar 

  14. Simpkins, A. N., Dias, C., & Leigh, R. (2016). Identification of reversible disruption of the human blood-brain barrier following acute ischemia. Stroke, 47(9), 2405–2408. https://doi.org/10.1161/STROKEAHA.116.013805

    Article  Google Scholar 

  15. Eggenhofer, E., Luk, F., Dahlke, M. H., & Hoogduijn, M. J. (2014). The life and fate of mesenchymal stem cells. Frontiers in Immunology, 5, 148. https://doi.org/10.3389/fimmu.2014.00148

    Article  Google Scholar 

  16. Pittenger, M. F., Discher, D. E., Péault, B. M., Phinney, D. G., Harre, J. M., & Caplan, A. I. (2019). Mesenchymal stem cell perspective: Cell biology to clinical progress. NPJ Regen. Med., 4, 22. https://doi.org/10.1038/s41536-019-0083-6

    Article  Google Scholar 

  17. Andrianov, V. V., Yafarova, G. G., Pashkevich, S. G., Tokalchik, Y. P., Dosina, M. O., Zamaro, A. S., Bogodvid, TKh., Iyudin, V. S., Bazan, L. V., Denisov, A. A., Kulchitsky, V. A., & Gainutdinov, Kh. L. (2020). Changes of the nitric oxide and copper content in the olfactory bulbs of rats brain after modeling of brain stroke and intranasal administration of mesenchymal stem cells. Applied Magnetic Resonance, 51(4), 375–387.

    Article  Google Scholar 

  18. Lotfy, A., Salama, M., Zahran, F., Jones, E., Badawy, A., & Sobh, M. (2014). Characterization of mesenchymal stem cells derived from rat bone marrow and adipose tissue: A comparative study. International Journal of Stem Cells, 7(2), 135–142. https://doi.org/10.15283/ijsc.2014.7.2.135

    Article  Google Scholar 

  19. Spees, J. L., Lee, R. H., & Gregory, C. A. (2016). Mechanisms of mesenchymal stem/stromal cell function. Stem Cell Research & Therapy, 7, 125. https://doi.org/10.1186/s13287-016-0363-7

    Article  Google Scholar 

  20. Hmadcha, A., Martin-Montalvo, A., Gauthier, B. R., Soria, B., & Capilla-Gonzalez, V. (2020). Therapeutic potential of mesenchymal stem cells for cancer therapy. Frontiers in Bioengineering and Biotechnology, 8, 43. https://doi.org/10.3389/fbioe.2020.00043

    Article  Google Scholar 

  21. Salehi, M. S., Jurek, B., Karimi-Haghighi, S., Nezhad, N. J., Mousavi, S. M., Hooshmandi, E., Safari, A., Dianatpour, M., Haerteis, S., Miyan, J. A., Pandamooz, S., & Borhani-Haghigh, A. (2022). Intranasal application of stem cells and their derivatives as a new hope in the treatment of cerebral hypoxia/ischemia: A review. Reviews in Neurosciences, 33(6), 583–606. https://doi.org/10.1515/revneuro-2021-0163

    Article  Google Scholar 

  22. van Velthoven, C. T. J., Kavelaars, A., van Bel, F., & Heijnen, C. J. (2010). Nasal administration of stem cells: A promising novel route to treat neonatal ischemic brain damage. Pediatric Research, 68, 419–422. https://doi.org/10.1203/PDR.0b013e3181f1c289

    Article  Google Scholar 

  23. Lochhead, J. J., & Thorne, R. G. (2012). Intranasal delivery of biologics to the central nervous system. Advanced Drug Delivery Reviews, 64(7), 614–628. https://doi.org/10.1016/j.addr.2011.11.002

    Article  Google Scholar 

  24. Li, Y. H., Feng, L., Zhang, G. X., & Ma, C. G. (2015). Intranasal delivery of stem cells as therapy for central nervous system disease. Experimental and Molecular Pathology, 98(2), 145–151. https://doi.org/10.1016/j.yexmp.2015.01.016

    Article  Google Scholar 

  25. Zhang, Y.-T., He, K.-J., Zhang, J.-B., Ma, Q.-H., Wang, F., & Liu, C.-F. (2021). Advances in intranasal application of stem cells in the treatment of central nervous system diseases. Stem Cell Research & Therapy, 12(1), 210. https://doi.org/10.1186/s13287-021-02274-0

    Article  Google Scholar 

  26. Grudzenski, S., Baier, T., Ebert, A., Pullens, P., Lemke, A., Bieback, K., Dijkhuizen, R. M., Schad, L. R., Alonso, A., Hennerici, M. G., & Fatar, M. (2017). The effect of adipose tissue-derived stem cells in a middle cerebral artery occlusion stroke model depends on their engraftment rate. Stem Cell Research & Therapy, 8(1), 96. https://doi.org/10.1186/s13287-017-0545-y

    Article  Google Scholar 

  27. Choi, B. Y., Kim, O. J., Min, S-H., Jeong, J. H., Suh, S. W., & Chung, T. N. (2018). Human placenta-derived mesenchymal stem cells reduce mortality and hematoma size in a rat intracerebral hemorrhage model in an acute phase. Stem Cells International, 2018, 1–10. https://doi.org/10.1155/2018/1658195

  28. Pluchino, S., Zanotti, L., & Martino, G. (2005). Neurosphere-derived multipotent precursors promote neuroprotection by an immunomodulatory mechanism. Nature, 436, 266–271. https://doi.org/10.1038/nature03889

    Article  Google Scholar 

  29. Lee, I.-H., Huang, S.-S., Chuang, C.-Y., Liao, K.-H., Chang, L.-H., Chuang, C.-C., Su, Y.-S., Lin, H.-J., Hsieh, J.-Y., Su, S.-H., Lee, O.K.-S., & Kuo, H.-C. (2017). Delayed epidural transplantation of human induced pluripotent stem cell-derived neural progenitors enhances functional recover after stroke. Science and Reports, 7(1), 1943. https://doi.org/10.1038/s41598-017-02137-w

    Article  Google Scholar 

  30. Capotondo, A., Milazzo, R., Garcia-Manteiga, J. M., Cavalca, E., Montepeloso, A., Garrison, B., Peviani, M., Rossi, D. J., & Biffi, A. (2017). Intracerebroventricular delivery of hematopoietic progenitors results in rapid and robust engraftment of microglia-like cells. Science Advances, 3(12), e1701211. https://doi.org/10.1126/sciadv.1701211

    Article  Google Scholar 

  31. Chartoff, E. H, Damez-Werno, D., Sonntag, K. C., Hassinger, L., Kaufmann, D. E., Peterson, J., McPhie, D., Cataldo, A. M., & Cohen, B. M. (2011). Detection of intranasally delivered bone marrow-derived mesenchymal stromal cells in the lesioned mouse brain: a cautionary report. Stem Cells International, 2011(4), 586586. https://doi.org/10.4061/2011/586586

  32. Kulchitsky, V. A., Shanko, Y. G., Molchanov, P. G., Cherenkevich, S. N., Chotianovich, M. O., Denisov, A. A., Pashkevich, S. G., Strizhak, I. V., Andrievskaya, M. V., Rodich, A. V., Pitlick, T. N., & Bulay, P. M. (2012). The direction of stem cells movement into the brain depends on the areas of their injection into peripheral parts of the nervous system. Biological Motility: International Symposium, Biological Motility: Fundamental and Applied Science, 99–101.

  33. Stukach, Y. P., Shanko, Y. G., & Kulchitsky, V. A. (2016). Experimental substantiation of stem cells delivery to the brain through cerebral nerves endings. Biological Motility, 232–235.

  34. Yu, D., Li, G., Lesniak, M. S., & Balyasnikova, I. V. (2017). Intranasal delivery of therapeutic stem cells to glioblastoma in a mouse model. Journal of Visualized Experiments, 124, 55845. https://doi.org/10.3791/55845

    Article  Google Scholar 

  35. Tang, Y., Han, L., Bai, X., Liang, X., Zhao, J., Huang, F., & Wang, J. (2020). Intranasal delivery of bone marrow stromal cells preconditioned with fasudil to treat a mouse model of Parkinson’s disease. Neuropsychiatric Disease and Treatment, 16, 249–262. https://doi.org/10.2147/NDT.S238646

    Article  Google Scholar 

  36. Santamaria, G., Brandi, E., Vitola, P., Grandi, F., Ferrara, G., Pischiutta, F., Vegliante, G., Zanier, E. R., Re, F., Uccelli, A., Forloni, G., de Rosbo, N. K., & Balducci, C. (2021). Intranasal delivery of mesenchymal stem cell secretome repairs the brain of Alzheimer’s mice. Cell Death and Differentiation, 28(1), 203–218. https://doi.org/10.1038/s41418-020-0592-2

    Article  Google Scholar 

  37. Xie, C., Wang, K., Peng, J., Jiang, X., Pan, S., Wang, L., Wu, Y., & Guan, Y. (2022). BMJ Open, 12(11), e055108. https://doi.org/10.1136/bmjopen-2021-055108

    Article  Google Scholar 

  38. Li, Y., Wu, H., Jiang, X., Dong, Y., Zheng, J., & Gao, J. (2022). New idea to promote the clinical applications of stem cells or their extracellular vesicles in central nervous system disorders: Combining with intranasal delivery. Acta Pharmaceutica Sinica B, 12, 3215–3232.

    Article  Google Scholar 

  39. Stukach, Y. P. (2017). Stem cells migration to the brain through cranial nerves endings. The EuroBiotech Journal, 1(1), 99–100. https://doi.org/10.24190/ISSN2564-615X/2017/01.16

    Article  Google Scholar 

  40. Li, Y.-H., Yu, J.-W., Xi, J.-Y., Yu, W.-B., Liu, J.-C., Wang, Q., Song, L.-J., Feng, L., Yan, Y.-P., Zhang, G.-X., Xiao, B.-G., & Ma, C.-G. (2017). Fasudil enhances therapeutic efficacy of neural stem cells in the mouse model of MPTP-induced Parkinson’s disease. Molecular Neurobiology, 54(7), 5400–5413. https://doi.org/10.1007/s12035-016-0027-8

    Article  Google Scholar 

  41. Reutov, V. P., Okhotin, V. E., Shuklin, A. V., Sorokina, E. G., Kosicin, N. S., & Gurin, V. N. (2007). Nitric oxide and the cycle in the myocardium: Molecular, biochemical and physiological aspects. Uspehi fiziologicheskih nauk, 38(4), 39–58. (In Russ.).

    Google Scholar 

  42. Gainutdinov, Kh. L., Gavrilova, S. A., Iyudin, V. S., Golubeva, A. V., Davydova, M. P., Jafarova, G. G., Andrianov, V. V., & Koshelev, V. B. (2011). EPR study of the intensity of the nitric oxide production in rat brain after ischemic stroke. Applied Magnetic Resonance, 40, 267–278. https://doi.org/10.1007/s00723-011-0207-7

    Article  Google Scholar 

  43. Terpolilli, N. A., Moskowitz, M. A., & Plesnila, N. (2012). Nitric oxide: Considerations for the treatment of ischemic stroke. Journal of Cerebral Blood Flow & Metabolism, 32, 1332–1346. https://doi.org/10.1038/jcbfm.2012.12

    Article  Google Scholar 

  44. Haroonia, H. E., Naghdib, N., Sepehri, H., & Rohani, H. (2009). The role of hippocampal nitric oxide (NO) on learning and immediate, short- and long-term memory retrieval in inhibitory avoidance task in male adult rats. Behavioural Brain Research, 201, 166–172. https://doi.org/10.1016/j.bbr.2009.02.011

    Article  Google Scholar 

  45. Reutov, V. P. (2002). Nitric oxide cycle in mammals and the cyclicity principle. Biochemistry (Moscow), 67(3), 293–311. https://doi.org/10.1023/a:1014832416073

    Article  Google Scholar 

  46. Calabrese, V., Mancuso, C., Calvani, M., Rizzarelli, E., Butterfield, D. A., & Stella, A. M. G. (2007). Nitric oxide in the central nervous system: Neuroprotection versus neurotoxicity. Nature Reviews Neuroscience, 8, 767–775. https://doi.org/10.1038/nrn2214

    Article  Google Scholar 

  47. Steinert, J. R., Chernova, T., & Forsythe, I. D. (2010). Nitric oxide signaling in brain function, dysfunction, and dementia. The Neuroscientist, 16, 435–452. https://doi.org/10.1177/1073858410366481

    Article  Google Scholar 

  48. Vanin, A. F., Huisman, A., & Faassen, E. V. (2003). Dithiocarbamate as spin trap for nitric oxide detection: Methods in enzymology. Pitfalls and Successes, 359, 27–42. https://doi.org/10.1016/s0076-6879(02)59169-2

    Article  Google Scholar 

  49. Hogg, N. (2010). Free detection of nitric oxide by electron paramagnetic resonance spectroscopy. Radical Biology & Medicine, 49, 122–129. https://doi.org/10.1016/j.freeradbiomed.2010.03.009

    Article  Google Scholar 

  50. Shanko, Y., Zamaro, A., Takalchik, S. Y., Koulchitsky, S., Pashkevich, S., Panahova, E., Navitskaya, V., Dosina, M., Denisov, A., Bushuk, S., & Kulchitsky, V. (2018). Mechanisms of neural network structures recovery in brain trauma. Biomedical Journal of Scientific & Technical Research 7(5), 6148–6149. https://doi.org/10.26717/BJSTR.2018.07.001567

  51. Wang, X., Yang, X., Han, F., Gao, L., & Zhou, Y. (2021). Propofol improves brain injury induced by chronic cerebral hypoperfusion in rats. Food Science & Nutrition, 9, 2801–2809. https://doi.org/10.1002/fsn3.1915

    Article  Google Scholar 

  52. Krawczenko, A., & Klimczak, A. (2022). Adipose tissue-derived mesenchymal stem/stromal cells and their contribution to angiogenic processes in tissue regeneration. International Journal of Molecular Sciences, 23(5), 2425. https://doi.org/10.3390/ijms23052425

    Article  Google Scholar 

  53. Wan, J., Wu, T., Wang, K., Xia, K., Yin, L., & Chen, C. (2022). Polydopamine-modified decellularized intestinal scaffolds loaded with adipose-derived stem cells promote intestinal regeneration. Journal of Materials Chemistry B, 11(1), 154–168. https://doi.org/10.1039/d2tb01389d

    Article  Google Scholar 

  54. Morita, M., Suyama, Y., Notsu, T., Fukuoka, K., Ikuta, K., Kanayama, H., Umeda, R., Teraoka, S., Minato, H., Ninomiya, H., Tsuneto, M., Shirayoshi, Y., Hisatome, I., & Yagi, S. (2023). Effects of conditioned medium of adipose-derived stem cells exposed to platelet-rich plasma on the expression of endothelial nitric oxide synthase and angiogenesis by endothelial cells. Annals of Plastic Surgery, 90(2), 171–179. https://doi.org/10.1097/SAP.0000000000003368

    Article  Google Scholar 

  55. Helmy, M. A., Mohamed, A. F., Rasheed, H. M., & Fayad, A. I. (2020). A protocol for primary isolation and culture of adipose-derived stem cells and their phenotypic profile. Alexandria Journal of Medicine, 56(1), 42–50.

    Article  Google Scholar 

  56. Xu, S., Lu, J., Shao, A., Zhang, J. H., & Zhang, J. (2020). Glial cells: Role of the immune response in ischemic stroke. Frontiers in Immunology, 11(294), 2020. https://doi.org/10.3389/fimmu.2020.00294.eCollection

    Article  Google Scholar 

  57. Kulchitsky, V., Zamaro, A., Shanko, Y., & Koulchitsky, S. (2018). Positive and negative aspects of cell technologies in cerebral diseases. Journal of Neurology & Stroke, 8(2), 87–88. https://doi.org/10.15406/jnsk.2018.08.00286

    Article  Google Scholar 

  58. Mikoyan, V. D., Kubrina, L. N., Serezhenkov, V. A., Stukan, R. A., & Vanin, A. F. (1997). Complexes of Fe2+ with diethyldithiocarbamate or N-methyl-D-glucamine dithiocarbamate as traps of nitric oxide in animal tissues. Biochimica et Biophysica Acta, 1336, 225–234. https://doi.org/10.1016/s0304-4165(97)00032-9

    Article  Google Scholar 

  59. Gainutdinov, Kh. L., Andrianov, V. V., Iyudin, V. S., Yurtaeva, S. V., Jafarova, G. G., Faisullina, R. I., & Sitdikov, F. G. (2013). EPR study of nitric oxide production in rat tissues under hypokinesia. Biophysics, 58, 203–205.

    Article  Google Scholar 

  60. Ismailova, A. I., Gnezdilov, O. I., Obynochny, A. A., Muranova, L. N., Andrianov, V. V., Gainutdinov, Kh. L., Nasyrova, A. G., Nigmatullina, R. R., Rakhmatullina, F. F., & Zefirov, A. L. (2005). ESR study of the nitric oxide production in tissues of animals under the external influence on the functioning of the cardiovascular and nervous systems. Applied Magnetic Resonans, 28, 421–430.

    Article  Google Scholar 

  61. Faassen, E. E. V., Koeners, M. P., Joles, J. A., & Vanin, A. F. (2008). Detection of basal NO production in rat tissues using iron–dithiocarbamate complexes. Nitric Oxide, 18, 279–286. https://doi.org/10.1016/j.niox.2008.02.003

    Article  Google Scholar 

  62. Harrell, C. R., Fellabaum, C., Jovicic, N., Djonov, V., Arsenijevic, N., & Volarevic, V. (2019). Molecular mechanisms responsible for therapeutic potential of mesenchymal stem cell-derived secretome. Cells, 8(5), 467. https://doi.org/10.3390/cells8050467

    Article  Google Scholar 

  63. Shanko, Y., Navitskaya, V., Zamaro, A., Krivenko, S., Zafranskaya, M., Pashkevich, S., Koulchitsky, S., Takalchik (Stukach), Y., Denisov, A., & Kulchitsky, V. (2018). Prospects of perineural administration of autologous mesenchymal stem cells of adipose tissue in patients with cerebral infarction. Biomedical Journal of Scientific & Technical Research, 10(1), 1–3. https://doi.org/10.26717/BJSTR.2018.10.001884

    Article  Google Scholar 

  64. Javidi, E., & Magnus, T. (2019). autoimmunity after ischemic stroke and brain injury. Frontiers in Immunology, 10, 686. https://doi.org/10.3389/fimmu.2019.00686

    Article  Google Scholar 

  65. Zhao, Y., & Gong, C. X. (2015). From chronic cerebral hypoperfusion to Alzheimer-like brain pathology and neurodegeneration. Cellular and Molecular Neurobiology, 35(1), 101–110. https://doi.org/10.1007/s10571-014-0127-9

    Article  Google Scholar 

  66. LaManna, J. C., Chavez, J. C., & Pichiule, P. (2004). Structural and functional adaptation to hypoxia in the rat brain. Journal of Experimental Biology, 207, 3163–3169. https://doi.org/10.1242/jeb.00976

    Article  Google Scholar 

  67. Mukhamedshina, Y. O., Gilazieva, Z. E., Arkhipova, S. S., Galieva, L. R., Garanina, E. E., Shulman, A. A., Yafarova, G. G., Chelyshev, Y. A., Shamsutdinova, N. V., & Rizvanov, A. A. (2017). Electrophysiological, morphological, and ultrastructural features of the injured spinal cord tissue after transplantation of human umbilical cord blood mononuclear cells genetically modified with the VEGF and GDNF genes. Neural Plasticity, 2017(4), 9857918, 1–12 . https://doi.org/10.1155/2017/9857918

  68. Shcherbak, N. S., Yukina, GYu., Sukhorukova, E. G., & Thomson, V. V. (2020). Influence of ischemic postconditioning on the reaction of microglia of the nercortex in global cerebral ischemia in rats. Regional blood circulation and microcirculation, 19(2), 59–66. https://doi.org/10.24884/1682-6655-2020-19-2-59-66. In Russ.

    Article  Google Scholar 

  69. Garry, P. S., Ezra, M., Rowland, M. J., Westbrook, J., & Pattinson, K. T. S. (2015). The role of the nitric oxide pathway in brain injury and its treatment - From bench to bedside. Experimental Neurology, 263, 235–243. https://doi.org/10.1016/j.expneurol.2014.10.017

    Article  Google Scholar 

  70. Andrianov, V. V., Kulchitsky, V. A., Yafarova, G. G., Zamaro, A. S., Tokalchik, Y. P., Bazan, L. V., Bogodvid, TKh., Iyudin, V. S., Pashkevich, S. G., Dosina, M. O., & Gainutdinov, Kh. L. (2021). Comparative study of the intensity of nitric oxide production and copper content in the hippocampus of rats after modeling hemorrhagic stroke and brain injury. Applied Magnetic Resonance, 52(11), 1657–1669. https://doi.org/10.1007/s00723-021-01423-1

    Article  Google Scholar 

  71. Andrianov, V. V., Kulchitsky, V. A., Yafarova, G. G., Tokalchik, Y. P., Zamaro, A. S., Bazan, L. V., Bogodvid, TKh., Iyudin, V. S., Pashkevich, S. G., Dosina, M. O., & Gainutdinov, Kh. L. (2021). The content of nitric oxide and copper in the olfactory bulb of the rat brain after modeling cerebral ischemia and intranasal administration of mesenchymal stem cells. Regional circulation and microcirculation, 20(2), 77–86. https://doi.org/10.24884/1682-6655-2021-20-2-77-86. In Russ.

    Article  Google Scholar 

  72. Andrianov, V. V., Pashkevich, S. G., Yafarova, G. G., Denisov, A. A., Iyudin, V. S., Bogodvid, TKh., Dosina, M. O., Kulchitsky, V. A., & Gainutdinov, Kh. L. (2016). Changes of nitric oxide content in the rat hippocampus, heart and liver in acute phase of ischemia. Applied Magnetic Resonance, 47(9), 965–976. https://doi.org/10.1007/s00723-016-0815-3

    Article  Google Scholar 

  73. Pluto, R. M. (2005). Delayed cerebral vasospasm and nitric oxide: Review, new hypothesis, and proposed treatment. Pharmacology & Therapeutics, 105(1), 23–56. https://doi.org/10.1016/j.pharmthera.2004.10.002

    Article  Google Scholar 

  74. Kuzenkov, V. S., Krushinskii, A. L., & Reutov, V. P. (2013). Effect of cation type and concentration of nitrates on neurological disorders during experimental cerebral ischemia. Bulletin of Experimental Biology and Medicine, 155(6), 748–751. https://doi.org/10.1007/s10517-013-2243-9

    Article  Google Scholar 

  75. Gonzalez-Zulueta, M., Ensz, L. M., Mukhina, G., Engelhardt, J. F., Oberley, L. W., Dawson, V. L., & Dawson, T. M. (1998). Manganese superoxide dismutase protects nNOS neurons from NMDA and nitric oxide-mediated neurotoxicity. Journal of Neuroscience, 18(6), 2040–2055. https://doi.org/10.1523/JNEUROSCI.18-06-02040

    Article  Google Scholar 

  76. Grabb, M. C., & Choi, D. W. (1999). Ischemic tolerance in murine cortical cell culture: Critical role for NMDA receptors. Journal of Neuroscience, 19(5), 1657–1662. https://doi.org/10.1523/JNEUROSCI.19-05-01657

    Article  Google Scholar 

  77. Zheng, Z., Zhang, L., Qu, Y., Xao, G., Li, S., Bao, S., Lu, Q. R., & Mu, D. (2018). Mesenchymal stem cells protect against hypoxia-ischemia brain damage by enhancing autophagy through brain derived neurotrophic factor/mammalin target of rapamycin signaling pathway. Stem Cells, 36(7), 1109–1121. https://doi.org/10.1002/stem.2808

    Article  Google Scholar 

Download references

Acknowledgements

The authors thanks the colleagues S.G. Pashkevich and M.O. Dosina from the Institute of Physiology of the National Academy of Sciences of Belarus for technical assistance.

Funding

Ischemia modeling was carried out at the Brain Center, Institute of Physiology of the National Academy of Sciences of Belarus (Minsk, Belarus); the work was supported by the State Committee on Science and Technology of the Republic of Belarus (No. M19LITG-002). Measuring the EPR spectra of the samples was carried out at Zavoisky Physical-Technical Institute, KazSC RAS (Kazan), within the framework of a state assignment. The storage of samples and processing of the results were carried out at Kazan Federal University (Kazan, Russia) and funded by framework of fulfilling the state assignment no. 0671–2020-0059.

Author information

Authors and Affiliations

Authors

Contributions

Guzel Yafarova carried out the interpretation of the results of measuring the behavioral changes and compared them with the results of NO level; prepared Fig. 1; and helped in drafting the manuscript.

Yulia Tokalchik participated in the simulation of ischemia and in measuring behavioral changes after this operation and participated in its interpretation and in extraction of brain samples for further measurements by EPR spectroscopy.

Tatiana Filipovich participated in the simulation of ischemia and in measuring behavioral changes after this operation and participated in its interpretation and in extraction of brain samples for further measurements by EPR spectroscopy.

Vyacheslav Andrianov carried out calculations and analysis of nitric oxide (NO) and copper signals in EPR spectra of the samples’ intensity; performed the statistical analysis; prepared Figs. 2, 3, 4, and 5; participated in interpretation of the results; and helped in drafting the manuscript.

Lyeh Bazan carried out measurements of EPR spectra of samples and participated in their interpretation.

Tatiana Bogodvid did the literature search, participated in the analysis of results and interpretation the role of NO in brain ischemia and protective actions at the NO level, and helped in drafting the manuscript.

Abdulla Chihab helped in drafting the manuscript and was responsible for its editing.

Aleksandra Zamaro participated in the simulation of ischemia and in measuring behavioral changes after this operation and participated in its interpretation and in extraction of brain samples for further measurements by EPR spectroscopy.

Vladimir Kulchitsky conceived the study, participated in its design and coordination, helped in drafting the manuscript, and was responsible for final approval.

Khalil Gainutdinov conceived the study, was responsible for the conception of its design and coordination, helped in drafting the manuscript, and did the literature search and final approval.

All authors read and approved the final manuscript.

Corresponding author

Correspondence to Khalil Gainutdinov.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics Approval and Consent to Participate

The experimental procedures (using anesthesia methods) are in compliance with the National Institutes of Health Guide for Care and Use of Laboratory Animals (Publication No. 85–23, revised 1985) and the UK Animals Scientific Procedures Act 1986 or the European Communities Council Directive of 24 November 1986 (86/609/EEC). The methods are approved by the Scientific Council of the Institute of Physiology of the National Academy of Sciences of Belarus (protocol No. 8, 26.08.2010).

Consent for Publication

All authors agree to publish the results and approved the final manuscript.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yafarova, G., Tokalchik, Y., Filipovich, T. et al. The Effects of Intranasal Implantation of Mesenchymal Stem Cells on Nitric Monoxide Levels in the Hippocampus, Control of Cognitive Functions, and Motor Activity in a Model of Cerebral Ischemia in Rats. BioNanoSci. 13, 393–404 (2023). https://doi.org/10.1007/s12668-023-01072-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-023-01072-7

Keywords

Navigation