Skip to main content
Log in

Influence of Hall and Ion-Slip Currents on Peristaltic Transport of Magneto-Nanofluid in an Asymmetric Channel

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Of special concern here is to examine the dual impact of Hall and ion-slip currents on a peristaltic transport of water-based nanofluid in an asymmetric channel under the influence of a strong magnetic field. The heat transfer is simulated in the presence of viscous and Ohmic dissipations. Copper-water nanofluid is considered in this simulation. The governing equations are simplified under long wavelength and small Reynolds number approximations. Closed-form solutions are obtained for stream function, axial velocity, temperature, and axial pressure gradient. The graphical analysis examines the impacts of various influential parameters on axial velocity, temperature, axial pressure gradient, pressure rise, frictional forces, heat transfer coefficient, and streamline structure. The temperature function shows a decaying behavior due to the existence of Hall and ion-slip currents. The incorporation of Hall and ion-slip currents leads to lessening the axial pressure gradient. The trapping phenomena are designed and discussed under significant governing parameters. The entrapped bolus is symmetric about the centerline for the symmetric channel whereas it slightly tends to shift in the reverse direction of the wave propagation for the asymmetric channel. This study is envisioned to shed light on conceivable applications in pharmaceutical, physiological, biological, and technological sciences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Taylor, R., Coulombe, S., Otanicar, T., Phelan, P., Gunawan, A., Lv, W., Rosengarten, G., Prasher, R., & Tyagi, H. (2013). Small particles, big impacts: a review of the diverse applications of nanofluids. Journal of Applied Physics, 113, 011301–1–19.

    Article  Google Scholar 

  2. Choi, S.U.S. (1995). Enhancing thermal conductivity of fluid with nanoparticales, in Developments and Applications of Non-Newtonian Flows. ASME FFD 231/MD 66, 99–105.

  3. Cubillo, A.E., Pecharroman, C., Aguilar, E., Santaren, J., & Moya, J.S. (2006). Antibacterial activity of copper monodispersed nanoparticles into sepiolite. Journal of Materials Science, 41, 5208–12.

    Article  Google Scholar 

  4. Nithya, A., Mohan, S.C., Jeganathan, K., & Jothivenkatachalam, K. (2017). A potential photocatalytic antimicrobial and anti cancer activity of chitosan-copper nanocomposite. International Journal of Biological Macromolecules, 104, 1774–82.

    Article  Google Scholar 

  5. Hwang, Y., Park, H.S., Lee, J.K., & Jung, W.H. (2006). Thermal conductivity and lubrication characteristics of nanofluids. Current Applied Physics, 6, e67–e71.

    Article  Google Scholar 

  6. Akbar, N.S., & Butt, A.W. (2016). Ferromagnetic effects for peristaltic flow of Cu-water nanofluid for different shapes of nanosize particles. Applied Nanoscience, 6, 379–385.

    Article  Google Scholar 

  7. Mekheimer, K.H., Hasona, W.M., Abo-Elkhair, R.E., & Zaher, A.Z. (2018). Peristaltic blood flow with gold nanoparticles as a third grade nanofluid in catheter: application of cancer therapy. Physics Letters A, 382, 85–93.

    Article  MathSciNet  MATH  Google Scholar 

  8. Mosayebidorcheh, S., & Hatami, M. (2018). Analytical investigation of peristaltic nanofluid flow and heat transfer in an asymmetric wavy wall channel (part 1: straight channel). International Journal of Heat and Mass Transfer, 126, 790–799.

    Article  Google Scholar 

  9. Ali, A., Shah, Z., Mumraiz, S., & Kumam, P. (2019). Entropy generation on MHD peristaltic flow of Cu-water nanofluid with slip conditions. Heat Transfer-Asian Research, 48, 4301–4319.

    Article  Google Scholar 

  10. Farooq, S., Khan, M.I., Waqas, M., Hayat, T., & Alsaedi, A. (2020). Peristalsis of carbon nanotubes with radiative heat flux. Applied Nanoscience, 10, 347–57.

    Article  Google Scholar 

  11. Khan, L.A., Raza, M., Mir, N.A., & Ellahi, R. (2020). Effects of different shapes of nanoparticles on peristaltic flow of MHD nanofluids filled in an asymmetric channel. Journal of Thermal Analysis and Calorimetry, 140, 879–890.

    Article  Google Scholar 

  12. Latham, T.W. (1966). Fluid motion in a peristaltic pump, MS Thesis. Cambridge: Massachusetts Institute of Technology.

    Google Scholar 

  13. Shapiro, A.H. (1967). Pumping and retrograde diffusion in peristaltic waves. In Proceedings of the workshop in ureteral reflux in children. Washington, DC.

  14. Srinivas, S., & Kothandapani, M. (2008). Peristaltic transport in an asymmetric channel with heat transfer - a note. International Communications in Heat and Mass Transfer, 35, 514–522.

    Article  MATH  Google Scholar 

  15. Akbar, N.S., Nadeem, S., & Ghafoor, A. (2013). Andamp; Lee, C. Consequences of nano fluid on peristaltic flow in an asymmetric channel. International Journal of Basic & Applied Sciences, 12, 75–96.

    Google Scholar 

  16. Akbar, N.S. (2014). Peristaltic Sisko nano fluid in an asymmetric channel. Applied Nanoscience, 4, 663–673.

    Article  Google Scholar 

  17. Mustafa, M., Hina, S., Hayat, T., & Alsaedi, A. (2013). Slip effects on the peristaltic motion of nanofluid in a channel with wall properties. Journal of Heat Transfer, 135(4), 1–7.

    Article  Google Scholar 

  18. Tripathi, D., & Bég, O.A. (2014). A study on peristaltic flow of nanofluids: application in drug delivery systems. International Journal of Heat and Mass Transfer, 70, 61–70.

    Article  Google Scholar 

  19. Vajravelu, K., Sreenadh, S., Lakshminarayana, P., Sucharitha, G., & Rashidi, M.M. (2016). Peristaltic flow of Phan-Thien-Tanner fluid in an asymmetric channel with porous medium. Journal of Applied Fluid Mechanics, 9, 1615–25.

    Article  Google Scholar 

  20. Ranjit, N.K., Shit, G.C., & Sinha, A. (2017). Transportation of ionic liquids in a porous micro-channel induced by peristaltic wave with Joule heating and wall-slip conditions. Chemical Engineering Science, 171, 545–557.

    Article  Google Scholar 

  21. Hayat, T., Shafique, M., Tanveer, A., & Alsaedi, A. (2017). Slip and Joule heating effects on radiative peristaltic flow of hyperbolic tangent nanofluid. International Journal of Heat and Mass Transfer, 112, 559–567.

    Article  Google Scholar 

  22. Riaz, A., Zeeshan, A., Bhatti, M.M., & Ellahi, R. (2019). Peristaltic propulsion of Jeffrey nano-liquid and heat transfer through a symmetrical duct with moving walls in a porous medium. Physica A: Statistical Mechanics and its Applications, 545, 123788.

    Article  MathSciNet  Google Scholar 

  23. Pankhurst, Q.A., Connolly, J., Jones, S.K., & Dobson, J. (2003). Applications of magnetic nanoparticles in biomedicine. Journal of Physics D: Applied Physics, 36, 167–181.

    Article  Google Scholar 

  24. Moroz, P., Jones, S.K., & Gray, B.N. (2002). Magnetically mediated hyperthermia: current status and future directions. International Journal of Hyperthermia, 18, 267–284.

    Article  Google Scholar 

  25. Muthuraj, R., & Srinivas, S. (2010). A note on heat transfer to MHD oscillatory flow in an asymmetric wavy channel. International Communications in Heat and Mass Transfer, 37, 1255–1260.

    Article  Google Scholar 

  26. Jyothi, B., & Rao, P.K. (2013). Slip effects on MHD peristaltic transport of a Williamson fluid through a porous medium in a symmetric channel. Journal of Mathematical and Computational Science, 3(5), 1306–1324.

    Google Scholar 

  27. Akbar, N.S., Nadeem, S., & Khan, Z.H. (2014). Thermal andvelocity slip effects on the MHD peristaltic flow with carbon nanotubes in an asymmetric channel: application of radiation therapy. Applied Nanoscience, 4, 849–857.

    Article  Google Scholar 

  28. Khan, A.A., Ellahi, R., Gulzar, M.M., & Sheikholeslami, M. (2014). Effects of heat transfer on peristaltic motion of Oldroyd fluid in the presence of inclined magnetic field. Journal of Magnetism and Magnetic Materials, 372, 97–106.

    Article  Google Scholar 

  29. Kothandapani, M., & Prakash, J. (2015). Effects of thermal radiation parameter and magnetic field on the peristaltic motion of Williamson nanofluids in a tapered asymmetric channel. International Journal of Heat and Mass Transfer, 81, 234–245.

    Article  Google Scholar 

  30. Abbasi, F.M., Hayat, T., & Ahmad, B. (2015). Peristaltic transport of copper-water nanofluid saturating porous medium. Physica E: Low-dimensional Systems and Nanostructures, 67, 47–53.

    Article  Google Scholar 

  31. Sarkar, B.C., Das, S., Jana, R.N., & Makinde, O.D. (2015). Magnetohydrodynamic peristaltic flow of nanofluids in a convectively heated vertical asymmetric channel in presence of thermal radiation. Journal of Nanofluids, 4, 1–13.

    Article  Google Scholar 

  32. Abbasi, F.M., Hayat, T., & Alsaedi, A. (2015). Peristaltic transport of magneto-nanoparticles submerged in water: model for drug delivery system. Physica E: Low-dimensional Systems and Nanostructures, 68, 123–132.

    Article  Google Scholar 

  33. Misra, J.C., Mallick, B., & Sinha, A. (2018). Heat and mass transfer in asymmetric channels during peristaltic transport of an MHD fluid having temperature-dependent properties. Alexandria Engineering Journal, 57, 391–406.

    Article  Google Scholar 

  34. Nareen, S. (2016). Effects of Joule heating and convective boundary conditions on magnetodrodynamic peristaltic flow of couple-stress fluid. Journal of Heat Transfer, 138, 094502–1.

    Article  Google Scholar 

  35. Reddy, M.G., & Makinde, O.D. (2016). Magnetohydrodynamic peristaltic transport of Jeffery nanofluid in an asymmetric channel. Journal of Molecular Liquids, 223, 1242–8.

    Article  Google Scholar 

  36. Sadaf, H., Akbar, M.U., & Nadeem, S. (2018). Induced magnetic field analysis for the peristaltic transport of non-Newtonian nanofluid in an annulus. Mathematics and Computers in Simulation, 148, 16–36.

    Article  MathSciNet  MATH  Google Scholar 

  37. Noreen, S. (2018). Magneto-thermo hydrodynamic peristaltic flow of Eyring-Powell nanofluid in asymmetric channel. Nonlinear Engineering, 7(2), 83–90.

    Article  MathSciNet  Google Scholar 

  38. Akbar, N.S., Huda, A.B., Habib, M.B., & Tripathi, D. (2019). Nanoparticles shape effects on peristaltic transport of nanofluids in presence of magnetohydrodynamics. Microsystem Technologies, 25, 283–294.

    Article  Google Scholar 

  39. Bhatti, M.M., Zeeshan, A., Ellahi, R., Bég, O.A., & Kadir, A. (2019). Effects of coagulation on the two-phase peristaltic pumping of magnetized Prandtl biofluid through an endoscopic annular geometry containing a porous medium. Chinese Journal of Physics, 58, 222–234.

    Article  Google Scholar 

  40. Prakash, J., Siva, E.P., Tripathi, D., Kuharat, S., & Bég, O.A. (2019). Peristaltic pumping of magnetic nanofluids with thermal radiation and temperature-dependent viscosity effects: modelling a solar magneto-biomimetic nanopump. Renewable Energy, 133, 1308–1326.

    Article  Google Scholar 

  41. Prakash, J., Siva, E.P., Tripathi, D., & Kothandapani, M. (2019). Nanofluids flow driven by peristaltic pumping in occurrence of magnetohydrodynamics and thermal radiation. Materials Science in Semiconductor Processing, 100, 290–300.

    Article  Google Scholar 

  42. Prakash, J., Siva, E.P., Tripathi, D., & Bég, O.A. (2019). Thermal slip and radiative heat transfer effects on electro-osmotic magnetonanoliquid peristaltic propulsion through a microchannel. Heat Transfer-Asian Research, 48, 2882–2908.

    Article  Google Scholar 

  43. Hasona, W.M., Almalki, N.H., ElShekhipy, A.A., & Ibrahim, M.G. (2019). Thermal radiation and variable electrical conductivity effects on MHD peristaltic motion of Carreau nanofluids: radiotherapy and thermotherapy of oncology treatment. Heat Transfer-Asian Research, 48(3), 938–956.

    Article  Google Scholar 

  44. Noreen, S., Waheed, S., Lu, D.C., & Hussanan, A. (2021). Entropy generation in electromagnetohydrodynamic water based three Nano fluids via porous asymmetric microchannel. European Journal of Mechanics / B Fluids, 85, 458–466.

    Article  MathSciNet  Google Scholar 

  45. Nowar, K. (2014). Peristaltic flow of a nanofluid under the effect of Hall current and porous medium. Mathematical Problems in Engineering, 2014, 1–15.

    Article  MathSciNet  MATH  Google Scholar 

  46. Abo-Eldahab, E.M., Barakat, E.I., & Nowar, K.I. (2010). Effects of Hall and ion-slip currents on peristaltic transport of a couple stress fluid. International Journal of Applied Physics and Mathematics, 2, 145–157.

    MATH  Google Scholar 

  47. Asghar, S., Hussain, Q., Hayat, T., & Alsaadi, F. (2014). Hall and ion slip effects on peristaltic flow and heat transfer analysis with Ohmic heating. Applied Mathematics and Mechanics (English Edition), 35 (12), 1509–1524.

    Article  MathSciNet  MATH  Google Scholar 

  48. Hayat, T., Zahir, H., Tanveer, A., & Alsaedi, A. (2016). Influences of Hall current and chemical reaction in mixed convective peristaltic flow of Prandtl fluid. Journal of Magnetism and Magnetic Materials, 321-327, 407.

    Google Scholar 

  49. Hayat, T., Shafique, M., Tanveer, A., & Alsaedi, A. (2016). Hall and ion slip effects on peristaltic flow of Jeffrey nanofluid with Joule heating. Journal of Magnetism and Magnetic Materials, 407, 51–59.

    Article  Google Scholar 

  50. Rafiq, M., Yasmind, H., Hayat, T., & Alsaadi, F. (2019). Effect of Hall and ion-slip on the peristaltic transport of nanofluid: a biomedical application. Chinese Journal of Physics, 60, 208–227.

    Article  MathSciNet  Google Scholar 

  51. Bhatti, M.M., & Rashidi, M.M. (2017). Study of heat and mass transfer with Joule heating on magnetohydrodynamic (MHD) peristaltic blood flow under the influence of Hall effect. Propulsion and Power Research, 6, 177–185.

    Article  Google Scholar 

  52. Hayat, T., Asghar, S., Tanveer, A., & Alsaedi, A. (2019). Effects of Hall current and ion-slip on the peristaltic motion of couple stress fluid with thermal deposition. Neural Computing & Applications, 31, 117–126.

    Article  Google Scholar 

  53. Ramesh, K., Tripathi, D., Bég, O.A., & Kadir, A. (2019). Slip and Hall current effects on Jeffrey fluid suspension flow in a peristaltic hydromagnetic blood micropump. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 43, 675–692.

    Article  Google Scholar 

  54. Abbasi, F.M., Shanakhat, I., & Shehzad, S.A. (2019). Entropy generation analysis for peristalsis of nanofluid with temperature dependent viscosity and Hall effects. Journal of Magnetism and Magnetic Materials, 474, 434–441.

    Article  Google Scholar 

  55. Asha, S.K., & Sunitha, G. (2020). Thermal radiation and hall effects on peristaltic blood flow with double diffusion in the presence of nanoparticles. Case Studies in Thermal Engineering, 17, 100560–15.

    Article  Google Scholar 

  56. Kakaç, S., & Pramuanjaroenkij, A. (2009). Review of convective heat transfer enhancement with nanofluids. International Journal of Heat and Fluid Flow, 52(13-14), 3187–3196.

    MATH  Google Scholar 

  57. Öztop, H.F., & Abu-Nada, E. (2008). Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids. International Journal of Heat and Fluid Flow, 29, 1326–1336.

    Article  Google Scholar 

  58. Cramer, K., & Pai, S. (1973). Magnetofluid dynamics for engineers and applied physicists. New York: Mcgrawhill.

    Google Scholar 

  59. Cowling, T.G. (1957). Magnetohydrodynamics. New york: Intersscience.

    MATH  Google Scholar 

  60. Lew, H.S., Fung, Y.C., & Lowenstein, C.B. (1971). Peristaltic carrying and mixing of Chyme in small intestine. Journal of Biomechanics, 4, 297–315.

    Article  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Das.

Ethics declarations

Conflict of Interests

On behalf of all authors, the Corresponding Author (S Das) states that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Research involving Humans and Animals Statement

None.

Informed Consent

None.

Appendix

Appendix

The following constant expressions are utilized in the results.

$$ \begin{array}{@{}rcl@{}} x_{1}&=&\frac{1}{\left( 1-\phi\right)^{2.5}\left\{(1-\phi)+\phi\left( \frac{\rho_{s}}{\rho_{f}}\right)\right\}},\\ x_{2}&=&\frac{1+\frac{3(\sigma-1)\phi}{(\sigma+2)-\left( \sigma-1\right)\phi}}{(1-\phi)+\phi\left( \frac{\rho_{s}}{\rho_{f}}\right)}, x_{3}=\frac{\frac{k_{s}+2k_{f}-2\phi(k_{f}-k_{s})}{k_{s}+2k_{f}+\phi(k_{f}-k_{s})}}{(1-\phi)+\phi \frac{(\rho c_{p})_{s}}{(\rho c_{p})_{f}}},\\ x_{4}&=&\frac{1+\frac{3(\sigma-1)\phi}{(\sigma+2)-\left( \sigma-1\right)\phi}}{(1-\phi)+\phi \frac{(\rho c_{p})_{s}}{(\rho c_{p})_{f}}}, x_{5}=\frac{1}{\left( 1-\phi\right)^{2.5}\left\{(1-\phi)+\phi \frac{(\rho c_{p})_{s}}{(\rho c_{p})_{f}}\right\}},\!\!\!\\ \alpha_{e}&=&(1+\beta_{i}\beta_{e}), y_{1}=\frac{x_{4}}{x_{3}}, y_{2}=\frac{x_{2}}{x_{1}}, y_{3}=\frac{x_{2} x_{5}}{x_{1} x_{4}},\\ y_{4}&=&\frac{x_{4}}{x_{3}}\sqrt{\frac{x_{1}}{x_{2}}}, y_{5}=\frac{x_{4}}{x_{3}}+\alpha_{e}\frac{x_{2} x_{5}}{x_{1} x_{3}},\\ A_{1}&=&-\frac{(h_{1}+h_{2})\left[F \zeta\cosh{\frac{\zeta}{2}\left( h_{1}-h_{2}\right)} +2\sinh{\frac{\zeta}{2}\left( h_{1}-h_{2}\right)}\right]} {2\left[(h_{1}-h_{2})\zeta\cosh{\frac{\zeta}{2}\left( h_{1}-h_{2}\right)} -2\sinh{\frac{\zeta}{2}\left( h_{1}-h_{2}\right)}\right]},\\ A_{2}&=&\frac{F \zeta\cosh{\frac{\zeta}{2}\left( h_{1}-h_{2}\right)} +2\sinh{\frac{\zeta}{2}\left( h_{1}-h_{2}\right)}} {(h_{1}-h_{2})\zeta\cosh{\frac{\zeta}{2}\left( h_{1}-h_{2}\right)} -2\sinh{\frac{\zeta}{2}\left( h_{1}-h_{2}\right)}},\\ A_{3}&=&\frac{(h_{1}-h_{2}+F)\sinh{\frac{\zeta}{2}\left( h_{1}-h_{2}\right)}} {(h_{1}-h_{2})\zeta\cosh{\frac{\zeta}{2}\left( h_{1}-h_{2}\right)} -2\sinh{\frac{\zeta}{2}\left( h_{1}-h_{2}\right)}},\\ A_{4}&=&-\frac{(h_{1}-h_{2}+F)\cosh{\frac{\zeta}{2}\left( h_{1}-h_{2}\right)}} {(h_{1}-h_{2})\zeta\cosh{\frac{\zeta}{2}\left( h_{1}-h_{2}\right)} -2\sinh{\frac{\zeta}{2}\left( h_{1}-h_{2}\right)}},\\ A_{5}&=&\frac{h_{1}[1-G(h_{2})]+h_{2}G(h_{1})}{h_{1}-h_{2}},\\ A_{6}&=&-\frac{1-G(h_{2})+G(h_{1})}{h_{1}-h_{2}},\\ \zeta&=&M\sqrt{\frac{y_{2}\alpha_{e}}{{\alpha_{e}^{2}}+{\beta_{e}^{2}}}} \end{array} $$
(35)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, S., Barman, B. & Jana, R.N. Influence of Hall and Ion-Slip Currents on Peristaltic Transport of Magneto-Nanofluid in an Asymmetric Channel. BioNanoSci. 11, 720–738 (2021). https://doi.org/10.1007/s12668-021-00881-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-021-00881-y

Keywords

Navigation