Skip to main content
Log in

Equilibrium, Kinetics and Thermodynamics of Bovine Serum Albumin from Carbon Based Materials Obtained from Food Wastes

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

In this research, the adsorption of bovine serum albümin (BSA) onto activated carbon (AC) obtained from apple bark was carried out and the thermodynamic parameters of adsorption process were investigated. Besides, the functions involved in BSA attachment were examined by adsorption experiments on retention capacities for BSA at 298 K, pH of 7, ionic strength of 5.10−2 M, and initial concentration of 5.10−2 g L−1, respectively. The bovine serum albumin (BSA) adsorption experiment onto activated carbon (AC) indicated that the highest adsorption yield was achieved at pH 5.5. The BSA molecules at pH 5.5 are very stable and that pH value is close to isoelectronic point of BSA. The surface structural change of BSA and activated carbon was studied before and after the experiment using scanning electron microscopy (SEM) analysis and Fourier Transform Infrared Spectroscopy (FTIR). By the way, the thermodynamic functions such as Gibbs free energy (ΔG), activation energy (Ea), activation entalphy (ΔH), and activation entropy (ΔS) were calculated as − 66.17, 37.73, − 29.09 kJ mol−1, and + 124.42 J mol−1 K−1 for bovine serum albumin (BSA) adsorption, respectively. The adsorption of the process was investigated using Eyring and Arrhenius equations and the adsorption kinetic of BSA on AC was found to be coherent with the pseudo-second-order model.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yıldız, Y., Pamuk, H., Karatepe, Ö., Dasdelen, Z., & Sen, F. (2016). Carbon black hybrid material furnished monodisperse platinum nanoparticles as highly efficient and reusable Electrocatalysts for formic acid electro-oxidation. RSC Advances, 6, 32858–32862. https://doi.org/10.1039/C6RA00232C.

    Article  Google Scholar 

  2. Boghossian, A. A., Sen, F., Gibbons, B. M., Sen, S., Faltermeier, S. M., Giraldo, J. P., Zhang, C. T., Zhang, J., Heller, D. A., & Strano, M. S. (2013). Application of nanoparticle antioxidants to enable hyperstable chloroplasts for solar energy harvesting. Advanced Energy Materials, 3, 881–893. https://doi.org/10.1002/aenm.201201014.

    Article  Google Scholar 

  3. Abrahamson, J. T., Sempere, B., Walsh, M. P., Forman, J. M., Şen, F., Şen, S., Mahajan, S. G., Paulus, G. L. C., Wang, Q. H., Choi, W., & Strano, M. S. (2013). Excess thermopower and the theory of thermopower waves. ACS Nano, 7, 6533–6544. https://doi.org/10.1021/nn402411k.

    Article  Google Scholar 

  4. Çelik, B., Başkaya, G., Sert, H., Karatepe, Ö., Erken, E., & Şen, F. (2016). Monodisperse Pt(0)/DPA@GO nanoparticles as highly active catalysts for alcohol oxidation and dehydrogenation of DMAB. International Journal of Hydrogen Energy, 41, 5661–5669. https://doi.org/10.1016/J.IJHYDENE.2016.02.061.

    Article  Google Scholar 

  5. Ayranci, R., Başkaya, G., Güzel, M., Bozkurt, S., Şen, F., & Ak, M. (2017). Carbon based nanomaterials for high performance optoelectrochemical systems. ChemistrySelect, 2, 1548–1555. https://doi.org/10.1002/slct.201601632.

    Article  Google Scholar 

  6. Şen, F., Demirbaş, Ö., Çalımlı, M. H., et al. (2018). The dye removal from aqueous solution using polymer composite films. Appl Water Sci, 8, 206. https://doi.org/10.1007/s13201-018-0856-x.

    Google Scholar 

  7. Şahin, B., Aygün, A., Gündüz, H., Şahin, K., Demir, E., Akocak, S., & Şen, F. (2018). Cytotoxic effects of platinum nanoparticles obtained from pomegranate extract by the green synthesis method on the MCF-7 cell line. Colloids Surfaces B Biointerfaces, 163, 119–124. https://doi.org/10.1016/j.colsurfb.2017.12.042.

    Article  Google Scholar 

  8. Giraldo, J. P., Landry, M. P., Faltermeier, S. M., McNicholas, T. P., Iverson, N. M., Boghossian, A. A., Reuel, N. F., Hilmer, A. J., Sen, F., Brew, J. A., & Strano, M. S. (2014). Erratum: corrigendum: plant nanobionics approach to augment photosynthesis and biochemical sensing. Nature Materials, 13, 530–530. https://doi.org/10.1038/nmat3947.

    Article  Google Scholar 

  9. Demirbas, O., Calimli, M.H., Kuyuldar, E. et al (2019) Equilibrium, kinetics, and thermodynamic of adsorption of enzymes on diatomite clay materials. BioNanoSci. 2191–1630. https://doi.org/10.1007/s12668-019-00615-1.

  10. Şahin, B., Demir, E., Aygün, A., Gündüz, H., & Şen, F. (2017). Investigation of the effect of pomegranate extract and monodisperse silver nanoparticle combination on MCF-7 cell line. Journal of Biotechnology, 260, 79–83. https://doi.org/10.1016/j.jbiotec.2017.09.012.

    Article  Google Scholar 

  11. Goksu, H., Yıldız, Y., Çelik, B., Yazici, M., Kilbas, B., & Sen, F. (2016). Eco-friendly hydrogenation of aromatic aldehyde compounds by tandem dehydrogenation of dimethylamine-borane in the presence of a reduced graphene oxide furnished platinum nanocatalyst. Catalysis Science & Technology, 6, 2318–2324. https://doi.org/10.1039/C5CY01462J.

    Article  Google Scholar 

  12. Çalımlı, M. H., Demirbaş, Ö., Aygün, A., et al. (2018). Immobilization kinetics and mechanism of bovine serum albumin on diatomite clay from aqueous solutions. Applied Water Science, 8, 209. https://doi.org/10.1007/s13201-018-0858-8.

    Article  Google Scholar 

  13. Aday, B., Pamuk, H., Kaya, M., & Sen, F. (2016). Graphene oxide as highly effective and readily recyclable catalyst using for the one-pot synthesis of 1,8-Dioxoacridine derivatives. Journal of Nanoscience and Nanotechnology, 16, 6498–6504. https://doi.org/10.1166/jnn.2016.12432.

    Article  Google Scholar 

  14. Demirbaş Ö., Çalımlı M.H., Kuyuldar E., Halil Baydilek İ., Nas M.S., Şen F (2019) Thermodynamic kinetics and sorption of bovine serum albumin with different clay materials. In: Inamuddin (eds) Applications of Ion Exchange Materials in Biomedical Industries. Springer, Cham. 978–3–030-06081-7. https://doi.org/10.1007/978-3-030-06082-4_6

  15. Bozkurt, S., Tosun, B., Sen, B., Akocak, S., Savk, A., Ebeoğlugil, M. F., & Sen, F. (2017). A hydrogen peroxide sensor based on TNM functionalized reduced graphene oxide grafted with highly monodisperse Pd nanoparticles. Analytica Chimica Acta, 989, 88–94. https://doi.org/10.1016/j.aca.2017.07.051.

    Article  Google Scholar 

  16. Bujdák, J., & Rode, B. M. (1997). Silica, alumina, and clay-catalyzed alanine peptide bond formation. Journal of Molecular Evolution, 45, 457–466. https://doi.org/10.1007/PL00006250.

    Article  Google Scholar 

  17. Bujdák, J., Le Son, H., & Rode, B. M. (1996). Montmorillonite catalyzed peptide bond formation: the effect of exchangeable cations. Journal of Inorganic Biochemistry, 63, 119–124. https://doi.org/10.1016/0162-0134(95)00186-7.

    Article  Google Scholar 

  18. Causserand, C., Jover, K., Aimar, P., & Meireles, M. (1997). Modification of clay cake permeability by adsorption of protein. J Memb Sci, 137, 31–44. https://doi.org/10.1016/S0376-7388(97)00181-6.

    Article  Google Scholar 

  19. Ding, X., & Henrichs, S. M. (2002). Adsorption and desorption of proteins and polyamino acids by clay minerals and marine sediments. Marine Chemistry, 77, 225–237. https://doi.org/10.1016/S0304-4203(01)00085-8.

    Article  Google Scholar 

  20. Fusi, P., Ristori, G. G., Calamai, L., & Stotzky, G. (1989). Adsorption and binding of protein on “clean” (homoionic) and “dirty” (coated with Fe oxyhydroxides) montmorillonite, illite and kaolinite. Soil Biology and Biochemistry, 21, 911–920. https://doi.org/10.1016/0038-0717(89)90080-1.

    Article  Google Scholar 

  21. Gupta, A., Loew, G. H., & Lawless, J. (1983). Interaction of metal ions and amino acids: possible mechanisms for the adsorption of amino acids on homoionic smectite clays. Inorganic Chemistry, 22, 111–120. https://doi.org/10.1021/ic00143a025.

    Article  Google Scholar 

  22. Quiquampoix, H., Staunton, S., Baron, M.-H., & Ratcliffe, R. G. (1993). Interpretation of the pH dependence of protein adsorption on clay mineral surfaces and its relevance to the understanding of extracellular enzyme activity in soil. Colloids Surfaces A Physicochem Eng Asp, 75, 85–93. https://doi.org/10.1016/0927-7757(93)80419-F.

    Article  Google Scholar 

  23. Rigou, P., Rezaei, H., Grosclaude, J., Staunton, S., & Quiquampoix, H. (2006). Fate of prions in soil: adsorption and extraction by electroelution of recombinant ovine prion protein from montmorillonite and natural soils. Environmental Science & Technology, 40, 1497–1503. https://doi.org/10.1021/es0516965.

    Article  Google Scholar 

  24. Violante, A. (1995). Physicochemical properties of protein-Smectite and protein-Al(OH)x-Smectite complexes. Clay Minerals, 30, 325–336. https://doi.org/10.1180/claymin.1995.030.4.06.

    Article  Google Scholar 

  25. McClellan, S. J., & Franses, E. I. (2003). Effect of concentration and denaturation on adsorption and surface tension of bovine serum albumin. Colloids Surfaces B Biointerfaces, 28, 63–75. https://doi.org/10.1016/S0927-7765(02)00131-5.

    Article  Google Scholar 

  26. Brandes, N., Welzel, P. B., Werner, C., & Kroh, L. W. (2006). Adsorption-induced conformational changes of proteins onto ceramic particles: differential scanning calorimetry and FTIR analysis. Journal of Colloid and Interface Science, 299, 56–69. https://doi.org/10.1016/j.jcis.2006.01.065.

    Article  Google Scholar 

  27. Huang, B. X., Kim, H.-Y., & Dass, C. (2004). Probing three-dimensional structure of bovine serum albumin by chemical cross-linking and mass spectrometry. Journal of the American Society for Mass Spectrometry, 15, 1237–1247. https://doi.org/10.1016/j.jasms.2004.05.004.

    Article  Google Scholar 

  28. Kudelski, A. (2003). Influence of electrostatically bound proteins on the structure of linkage monolayers: adsorption of bovine serum albumin on silver and gold substrates coated with monolayers of 2-mercaptoethanesulphonate. Vibrational Spectroscopy, 33, 197–204. https://doi.org/10.1016/j.vibspec.2003.09.003.

    Article  Google Scholar 

  29. Hu, T., & Su, Z. (2003). A solid phase adsorption method for preparation of bovine serum albumin–bovine hemoglobin conjugate. Journal of Biotechnology, 100, 267–275. https://doi.org/10.1016/S0168-1656(02)00246-8.

    Article  Google Scholar 

  30. Hook, F., Rodahl, M., Kasemo, B., & Brzezinski, P. (1998). Structural changes in hemoglobin during adsorption to solid surfaces: effects of pH, ionic strength, and ligand binding. Proceedings of the National Academy of Sciences, 95, 12271–12276. https://doi.org/10.1073/pnas.95.21.12271.

    Article  Google Scholar 

  31. Oliva, F. Y., Avalle, L. B., Cámara, O. R., & De Pauli, C. P. (2003). Adsorption of human serum albumin (HSA) onto colloidal TiO2 particles, part I. Journal of Colloid and Interface Science, 261, 299–311. https://doi.org/10.1016/S0021-9797(03)00029-8.

    Article  Google Scholar 

  32. Sternik, D., Staszczuk, P., Grodzicka, G., Pękalska, J., & Skrzypiec, K. (2004). Studies of physicochemical properties of the surfaces with the chemically bonded phase of BSA. Journal of Thermal Analysis and Calorimetry, 77, 171–182. https://doi.org/10.1023/B:JTAN.0000033201.86803.fa.

    Article  Google Scholar 

  33. Vroman, L., & Adams, A. L. (1969). Findings with the recording ellipsometer suggesting rapid exchange of specific plasma proteins at liquid/solid interfaces. Surface Science, 16, 438–446. https://doi.org/10.1016/0039-6028(69)90037-5.

    Article  Google Scholar 

  34. Aygün, A., Yenisoy-Karakaş, S., & Duman, I. (2003). Production of granular activated carbon from fruit stones and nutshells and evaluation of their physical, chemical and adsorption properties. Microporous and Mesoporous Materials, 66, 189–195. https://doi.org/10.1016/j.micromeso.2003.08.028.

    Article  Google Scholar 

  35. Rajeshwarisivaraj, S. S., Senthilkumar, P., & Subburam, V. (2001). Carbon from cassava peel, an agricultural waste, as an adsorbent in the removal of dyes and metal ions from aqueous solution. Bioresource Technology, 80, 233–235. https://doi.org/10.1016/S0960-8524(00)00179-6.

    Article  Google Scholar 

  36. El-Sheikh, A. H., Newman, A. P., Al-Daffaee, H. K., Phull, S., & Cresswell, N. (2004). Characterization of activated carbon prepared from a single cultivar of Jordanian olive stones by chemical and physicochemical techniques. Journal of Analytical and Applied Pyrolysis, 71, 151–164. https://doi.org/10.1016/S0165-2370(03)00061-5.

    Article  Google Scholar 

  37. Wu, F. (1999). Pore structure and adsorption performance of the activated carbons prepared from plum kernels. Journal of Hazardous Materials, 69, 287–302. https://doi.org/10.1016/S0304-3894(99)00116-8.

    Article  Google Scholar 

  38. Tsai, W., Chang, C., Lin, M., Chien, S., Sun, H., & Hsieh, M. (2001). Adsorption of acid dye onto activated carbons prepared from agricultural waste bagasse by ZnCl2 activation. Chemosphere, 45, 51–58. https://doi.org/10.1016/S0045-6535(01)00016-9.

    Article  Google Scholar 

  39. Senthilkumaar, S., Varadarajan, P. R., Porkodi, K., & Subbhuraam, C. V. (2005). Adsorption of methylene blue onto jute fiber carbon: kinetics and equilibrium studies. Journal of Colloid and Interface Science, 284, 78–82. https://doi.org/10.1016/j.jcis.2004.09.027.

    Article  Google Scholar 

  40. Yalçın, N., & Sevinç, V. (2000). Studies of the surface area and porosity of activated carbons prepared from rice husks. Carbon N Y, 38, 1943–1945. https://doi.org/10.1016/S0008-6223(00)00029-4.

    Article  Google Scholar 

  41. Girgis, B. S., & El-Hendawy, A.-N. A. (2002). Porosity development in activated carbons obtained from date pits under chemical activation with phosphoric acid. Microporous and Mesoporous Materials, 52, 105–117. https://doi.org/10.1016/S1387-1811(01)00481-4.

    Article  Google Scholar 

  42. Akkus P (2006) Sugar esterious synthesis using lipase. G.Y.T.E. Institute of Engineering and Science.

  43. Gregory J (1994) Introduction to modern colloid science, Robert J. hunter. Oxford University press, Oxford, 1993. . viii + 338, price £14.95 (paperback). ISBN 0-19-855386-2. Polymer International 35:105–106 . https://doi.org/10.1002/pi.1994.210350115.

  44. Doğan, M., Alkan, M., Demirbaş, Ö., Özdemir, Y., & Özmetin, C. (2006). Adsorption kinetics of maxilon blue GRL onto sepiolite from aqueous solutions. Chemical Engineering Journal, 124, 89–101. https://doi.org/10.1016/j.cej.2006.08.016.

    Article  Google Scholar 

  45. Mantsch HH, Chapman D (1996) Infrared spectroscopy of biomolecules. Wiley-Liss.

  46. W. Tasman EA (1988) Dane’s Clinical Ophthalmology Lippincott.

  47. Demirbas O (2006) Methyl violetine biosorption on casein surface. Balikesir.

  48. Tekin, N., Demirbaş, Ö., & Alkan, M. (2005). Adsorption of cationic polyacrylamide onto kaolinite. Microporous and Mesoporous Materials, 85, 340–350. https://doi.org/10.1016/j.micromeso.2005.07.004.

    Article  Google Scholar 

  49. Vermöhlen, K., Lewandowski, H., Narres, H.-D., & Schwuger, M. (2000). Adsorption of polyelectrolytes onto oxides — the influence of ionic strength, molar mass, and Ca2+ ions. Colloids Surfaces A Physicochem Eng Asp, 163, 45–53. https://doi.org/10.1016/S0927-7757(99)00429-X.

    Article  Google Scholar 

  50. Dalla-Vecchia, R., Sebrão, D., Nascimento, M. d. G., & Soldi, V. (2005). Carboxymethylcellulose and poly(vinyl alcohol) used as a film support for lipases immobilization. Process Biochemistry, 40, 2677–2682. https://doi.org/10.1016/j.procbio.2004.12.004.

    Article  Google Scholar 

  51. Pronk, W., Kerkhof, P. J. A. M., Van Helden, C., & van’T Riet, K. (1988). The hydrolysis of triglycerides by immobilized lipase in a hydrophiiic membrane reactor. Biotechnology and Bioengineering, 32, 512–518. https://doi.org/10.1002/bit.260320414.

    Article  Google Scholar 

  52. Bhattacharya, A., Naiya, T., Mandal, S., & Das, S. (2007). Adsorption, kinetics and equilibrium studies on removal of Cr(VI) from aqueous solutions using different low-cost adsorbents. Chemical Engineering Journal. https://doi.org/10.1016/j.cej.2007.05.021.

  53. Sharma, Y. C. (2001). Effect of temperature on interfacial adsorption of Cr(VI) on Wollastonite. Journal of Colloid and Interface Science, 233, 265–270. https://doi.org/10.1006/jcis.2000.7232.

    Article  Google Scholar 

  54. Sariri, R., & Tighe, B. (1996). Effect of surface chemistry on protein interaction with hydrogel contact lenses. J Iran Polym, 5, 66.

    Google Scholar 

  55. Xu, H., Li, M., & He, B. (1995). Immobilization of Candida cylindracea lipase on methyl acrylate-divinyl benzene copolymer and its derivatives. Enzyme and Microbial Technology, 17, 194–199. https://doi.org/10.1016/0141-0229(94)00038-S.

    Article  Google Scholar 

  56. Montero, S., Blanco, A., Virto, M. D., Carlos Landeta, L., Agud, I., Solozabal, R., Lascaray, J., de Renobales, M., Llama, M. J., & Serra, J. L. (1993). Immobilization of Candida rugosa lipase and some properties of the immobilized enzyme. Enzyme and Microbial Technology, 15, 239–247. https://doi.org/10.1016/0141-0229(93)90144-Q.

    Article  Google Scholar 

  57. Lu, C. F., Nadarajah, A., & Chittur, K. K. (1994). A comprehensive model of multiprotein adsorption on surfaces. Journal of Colloid and Interface Science, 168, 152–161. https://doi.org/10.1006/jcis.1994.1404.

    Article  Google Scholar 

  58. Giacomelli, C. E., Bremer, M. G. E., & Norde, W. (1999). ATR-FTIR study of IgG adsorbed on different silica surfaces. Journal of Colloid and Interface Science, 220, 13–23. https://doi.org/10.1006/jcis.1999.6479.

    Article  Google Scholar 

  59. Guo, Y., & Bustin, R. (1998). FTIR spectroscopy and reflectance of modern charcoals and fungal decayed woods: implications for studies of inertinite in coals. International Journal of Coal Geology, 37, 29–53. https://doi.org/10.1016/S0166-5162(98)00019-6.

    Article  Google Scholar 

  60. Figueiredo, J., Pereira, M. F., Freitas, M. M., & Órfão, J. J. (1999). Modification of the surface chemistry of activated carbons. Carbon N Y, 37, 1379–1389. https://doi.org/10.1016/S0008-6223(98)00333-9.

    Article  Google Scholar 

  61. Li, Y.-H., Zhu, Y., Zhao, Y., Wu, D., & Luan, Z. (2006). Different morphologies of carbon nanotubes effect on the lead removal from aqueous solution. Diamond and Related Materials, 15, 90–94. https://doi.org/10.1016/j.diamond.2005.07.004.

    Article  Google Scholar 

  62. Mall, I. D., Srivastava, V. C., & Agarwal, N. K. (2006). Removal of Orange-G and methyl violet dyes by adsorption onto bagasse fly ash—kinetic study and equilibrium isotherm analyses. Dyes and Pigments, 69, 210–223. https://doi.org/10.1016/j.dyepig.2005.03.013.

    Article  Google Scholar 

  63. El-Naggar, I. M., Zakaria, E. S., Ali, I. M., Khalil, M., & El-Shahat, M. F. (2012). Kinetic modeling analysis for the removal of cesium ions from aqueous solutions using polyaniline titanotungstate. Arabian Journal of Chemistry, 5, 109–119. https://doi.org/10.1016/j.arabjc.2010.09.028.

    Article  Google Scholar 

  64. Ho, Y., & McKay, G. (1999). Pseudo-second order model for sorption processes. Process Biochemistry, 34, 451–465. https://doi.org/10.1016/S0032-9592(98)00112-5.

    Article  Google Scholar 

  65. Özcan, A., Öncü, E. M., & Özcan, A. S. (2006). Kinetics, isotherm and thermodynamic studies of adsorption of acid blue 193 from aqueous solutions onto natural sepiolite. Colloids Surfaces A Physicochem Eng Asp, 277, 90–97. https://doi.org/10.1016/j.colsurfa.2005.11.017.

    Article  Google Scholar 

  66. Chiou, M.-S., Ho, P.-Y., & Li, H.-Y. (2004). Adsorption of anionic dyes in acid solutions using chemically cross-linked chitosan beads. Dyes and Pigments, 60, 69–84. https://doi.org/10.1016/S0143-7208(03)00140-2.

    Article  Google Scholar 

  67. Guibal, E., McCarrick, P., & Tobin, J. M. (2003). Comparison of the sorption of anionic dyes on activated carbon and chitosan derivatives from dilute solutions. Separation Science and Technology, 38, 3049–3073. https://doi.org/10.1081/SS-120022586.

    Article  Google Scholar 

  68. Özcan, A., & Özcan, A. S. (2005). Adsorption of acid red 57 from aqueous solutions onto surfactant-modified sepiolite. Journal of Hazardous Materials, 125, 252–259. https://doi.org/10.1016/j.jhazmat.2005.05.039.

    Article  Google Scholar 

  69. Kannan, N., & Sundaram, M. M. (2001). Kinetics and mechanism of removal of methylene blue by adsorption on various carbons—a comparative study. Dyes and Pigments, 51, 25–40. https://doi.org/10.1016/S0143-7208(01)00056-0.

    Article  Google Scholar 

  70. Rahimi Gorji M, Debbaut C, Steuperaert M, Vanhove C, Segers P, Ceelen W (2018) CFD model of the interstitial fluid pressure (IFP) in realistic tumor geometries of peritoneal metastases from ovarian cancer. Biomed Eng 17th Natl Day, Abstr.

  71. Rahimi-Gorji, M., Ghajar, M., Kakaee, A.-H., & Domiri Ganji, D. (2017). Modeling of the air conditions effects on the power and fuel consumption of the SI engine using neural networks and regression. J Brazilian Soc Mech Sci Eng, 39, 375–384. https://doi.org/10.1007/s40430-016-0539-1.

    Article  Google Scholar 

  72. Sureshkumar Raju S, Ganesh Kumar K, Rahimi-Gorji M, Khan I (2019) Darcy–Forchheimer flow and heat transfer augmentation of a viscoelastic fluid over an incessant moving needle in the presence of viscous dissipation. Microsystem Technologies. https://doi.org/10.1007/s00542-019-04340-3.

  73. Hussanan, A., Khan, I., Gorji, M. R., & Khan, W. A. (2019). CNTS-water–based nanofluid over a stretching sheet. Bionanoscience, 9, 21–29. https://doi.org/10.1007/s12668-018-0592-6.

    Article  Google Scholar 

  74. Ahmed N, Ali Shah N, Ahmad B, Shah SIA, Ulhaq S, −Gorji MR (2018) Transient MHD convective flow of fractional nanofluid between vertical plates. Shahid Chamran Univ Ahvaz. https://doi.org/10.22055/JACM.2018.26947.1364.

  75. Kakaei, K., Rahimi, A., Husseindoost, S., Hamidi, M., Javan, H., & Balavandi, A. (2016). Fabrication of Pt-CeO2 nanoparticles supported sulfonated reduced graphene oxide as an efficient electrocatalyst for ethanol oxidation. International Journal of Hydrogen Energy, 41, 3861–3869. https://doi.org/10.1016/j.ijhydene.2016.01.013.

    Article  Google Scholar 

  76. Ho, Y. S., Porter, J. F., & McKay, G. (2002). No title. Water, Air, and Soil Pollution, 141, 1–33. https://doi.org/10.1023/A:1021304828010.

    Article  Google Scholar 

  77. Laidler KJ (Keith J, Meiser JH, Sanctuary BC (2003) Physical chemistry. Houghton Mifflin.

  78. K.J. Laidler JMM (1999) Physical chemistry. New York. NY.

  79. Singh, D. (2000). Studies of the adsorption thermodynamics of oxamyl on fly ash. Adsorption Science and Technology, 18, 741–748. https://doi.org/10.1260/0263617001493783.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mehmet Salih Nas, Anish Khan, Abdullah M. Asiri or Fatih Şen.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Novelty Statement

In this research, the adsorption of BSA onto activated carbon (AC) obtained from apple bark was carried out and the detailed thermodynamic parameters of adsorption process were investigated. Besides, the most effective temperature, pH, and initial concentration were determined in adsorption process. Besides, the calculation of activation parameters such as entropy, enthalpy, Gibbs free energy, and activation energy were defined for the adsorption of BSA on activated carbon

Electronic supplementary material

ESM 1

(DOCX 749 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çalımlı, M.H., Demirbaş, Ö., Aygün, A. et al. Equilibrium, Kinetics and Thermodynamics of Bovine Serum Albumin from Carbon Based Materials Obtained from Food Wastes. BioNanoSci. 9, 692–701 (2019). https://doi.org/10.1007/s12668-019-00633-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-019-00633-z

Keywords

Navigation