Skip to main content

Advertisement

Log in

Applications of Microfluidics in Stem Cell Biology

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Stem cell research can significantly benefit from recent advances of microfluidics technology. In a rationally designed microfluidic device, analyses of stem cells can be done in a much deeper and wider way than in a conventional tissue culture dish. Miniaturization makes analyses operated in a high-throughput fashion, while controls of fluids help to reconstruct the physiological environments. Through integration with present characterization tools like fluorescent microscope, microfluidics offers a systematic way to study the decision-making process of stem cells, which has attractive medical applications. In this paper, recent progress of microfluidic devices on stem cell research are discussed. The purpose of this review is to highlight some key features of microfluidics for stem cell biologists, as well as provide physicists/engineers an overview of how microfluidics has been and could be used for stem cell research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Whitesides, G. (2006). The origins and the future of microfluidics. Nature, 442(7101), 368.

    Article  Google Scholar 

  2. El-Ali, J., Sorger, P., Jensen, K. (2006). Cells on chips. Nature, 442(7101), 403.

    Article  Google Scholar 

  3. Austin, R., Tung, C., Lambert, G., Liao, D., Gong, X. (2010). An introduction to micro-ecology patches. Chemical Society Reviews, 39(3), 1049.

    Article  Google Scholar 

  4. Weissman, I. (2000). Stem cells: units of development, review Units of regeneration, and units in evolution. Cell, 100, 157.

    Article  Google Scholar 

  5. Thomson, J., Itskovitz-Eldor, J., Shapiro, S., Waknitz, M., Swiergiel, J., Marshall, V., Jones, J. (1998). Embryonic stem cell lines derived from human blastocysts. Science, 282(5391), 1145.

    Article  Google Scholar 

  6. Fuchs, E., & Segre, J. (2000). Stem cells: review a new lease on life. Cell, 100, 143.

    Article  Google Scholar 

  7. Nichols, J., Zevnik, B., Anastassiadis, K., Niwa, H., Klewe-Nebenius, D., Chambers, I., Scholer, H., Smith, A. (1998). Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell, 95(3), 379.

    Article  Google Scholar 

  8. Brignier, A., & Gewirtz, A. (2010). Embryonic and adult stem cell therapy. Journal of Allergy and Clinical Immunology, 125(2), S336.

    Article  Google Scholar 

  9. Yamanaka, S. (2007). Strategies and new developments in the generation of patient-specific pluripotent stem cells. Cell Stem Cell, 1(1), 39.

    Article  Google Scholar 

  10. Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4), 663.

    Article  Google Scholar 

  11. Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., Yamanaka, S. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131(5), 861.

    Article  Google Scholar 

  12. Johansson, C., Momma, S., Clarke, D., Risling, M., Lendahl, U., Frisén, J. (1999). Identification of a neural stem cell in the adult mammalian central nervous system. Cell, 96(1), 25.

    Article  Google Scholar 

  13. Jiang, Y., Jahagirdar, B., Reinhardt, R., Schwartz, R., Keene, C., Ortiz-Gonzalez, X., Reyes, M., Lenvik, T., Lund, T., Blackstad, M., et al. (2002). Pluripotency of mesenchymal stem cells derived from adult marrow. Nature, 418(6893), 41.

    Article  Google Scholar 

  14. Potten, C., & Loeffler, M. (1990). Stem cells: attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt. Development, 110(4), 1001.

    Google Scholar 

  15. Mery, E., Ricoul, F., Sarrut, N., Constantin, O., Delapierre, G., Garin, J., Vinet, F. (2008). A silicon microfluidic chip integrating an ordered micropillar array separation column and a nano-electrospray emitter for LC/MS analysis of peptides. Sensors and Actuators B: Chemical, 134(2), 438.

    Article  Google Scholar 

  16. Kalkandjiev, K., Riegger, L., Kosse, D., Welsche, M., Gutzweiler, L., Zengerle, R., Koltay, P. (2011). Microfluidics in silicon/polymer technology as a cost-efficient alternative to silicon/glass. Journal of Micromechanics and Microengineering, 21, 025008.

    Article  Google Scholar 

  17. Lin, Y., Yang, C., Wang, C., Chang, F., Huang, K., Hsieh, W. (2012). An aluminum microfluidic chip fabrication using a convenient micromilling process for fluorescent poly (DL-lactide-co-glycolide) microparticle generation. Sensors, 12(2), 1455.

    Article  Google Scholar 

  18. Xia, Y., & Whitesides, G. (1998). Soft lithography. Annual Review of Materials Science, 28(1), 153.

    Article  Google Scholar 

  19. Unger, M., Chou, H., Thorsen, T., Scherer, A., Quake, S. (2000). Monolithic microfabricated valves and pumps by multilayer soft lithography. Science, 288(5463), 113.

    Article  Google Scholar 

  20. Yu, L., Li, C., Liu, Y., Gao, J., Wang, W., Gan, Y. (2009). Flow-through functionalized PDMS microfluidic channels with dextran derivative for ELISAs. Lab Chip, 9(9), 1243.

    Article  Google Scholar 

  21. Fiddes, L., Raz, N., Srigunapalan, S., Tumarkan, E., Simmons, C., Wheeler, A., Kumacheva, E. (2010). A circular cross-section PDMS microfluidics system for replication of cardiovascular flow conditions. Biomaterials, 31(13), 3459.

    Article  Google Scholar 

  22. Wang, M., Cui, D., Wang, L., Chen, X., Zhao, Q. (2011). Fabrication of microfluidic electrocontrolled chip in polydimethylsiloxane (PDMS). International Journal of Nonlinear Sciences and Numerical Simulation, 3(3–4), 207.

    Google Scholar 

  23. Knight, J., Vishwanath, A., Brody, J., Austin, R. (1998). Hydrodynamic focusing on a silicon chip: mixing nanoliters in microseconds. Physical Review Letters, 80(17), 3863.

    Article  Google Scholar 

  24. Loutherback, K., Puchalla, J., Austin, R., Sturm, J. (2009). Deterministic microfluidic ratchet. Physical Review Letters, 102(4), 45301.

    Article  Google Scholar 

  25. Loutherback, K., Chou, K., Newman, J., Puchalla, J., Austin, R., Sturm, J. (2010). Improved performance of deterministic lateral displacement arrays with triangular posts. Microfluidics and Nanofluidics, 9(6), 1143.

    Article  Google Scholar 

  26. Lambert, G., Liao, D., Austin, R. (2010). Collective escape of chemotactic swimmers through microscopic ratchets. Physical Review Letters, 104(16), 168102.

    Article  Google Scholar 

  27. Zhang, Q., Lambert, G., Liao, D., Kim, H., Robin, K., Tung, C., Pourmand, N., Austin, R. (2011). Acceleration of emergence of bacterial antibiotic resistance in connected microenvironments. Science, 333(6050), 1764.

    Article  Google Scholar 

  28. Hong, J., Quake, S., et al. (2003). Integrated nanoliter systems. Nature Biotechnology, 21(10), 1179.

    Article  Google Scholar 

  29. Mark, D., Weber, P., Lutz, S., Focke, M., Zengerle, R., von Stetten, F. (2011). Aliquoting on the centrifugal microfluidic platform based on centrifugo-pneumatic valves. Microfluidics and Nanofluidics, 10(6), 1279.

    Article  Google Scholar 

  30. Araci, I., & Quake, S. (2012). Microfluidic very large scale integration (mVLSI) with integrated micromechanical valves. Lab Chip, 12, 2803–2806. doi:10.1039/C2LC40258K.

    Article  Google Scholar 

  31. Tsai, J., & Lin, L. (2002). Active microfluidic mixer and gas bubble filter driven by thermal bubble micropump. Sensors and Actuators A: Physical, 97, 665.

    Article  Google Scholar 

  32. Kannappan, K., Bogle, G., Travas-Sejdic, J., Williams, D. (2011). Computational design of mixers and pumps for microfluidic systems, based on electrochemically-active conducting polymers. Chemical Physics, 13(12), 5450.

    Article  Google Scholar 

  33. Lee, C., Chang, C., Wang, Y., Fu, L. (2011). Microfluidic mixing: a review. International Journal of Molecular Sciences, 12(5), 3263.

    Article  Google Scholar 

  34. Graydon, O. (2011). Microfluidics: laser-induced bubbles create valves and pumps. Nature Photonics, 5(5), 256.

    Article  Google Scholar 

  35. Kim, J., Kang, M., Jensen, E., Mathies, R. (2012). Lifting gate PDMS microvalves and pumps for microfluidic control. Analytical Chemistry doi:10.1021/ac202934x.

    Article  Google Scholar 

  36. Morrison, S., & Spradling, A. (2008). Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell, 132(4), 598.

    Article  Google Scholar 

  37. Barker, N., Ridgway, R., van Es, J., M. van de Wetering, Begthel, H., M. van den Born, Danenberg, E., Clarke, A., Sansom, O., Clevers, H. (2008). Crypt stem cells as the cells-of-origin of intestinal cancer. Nature, 457(7229), 608.

    Article  Google Scholar 

  38. Aguiari, P., Leo, S., Zavan, B., Vindigni, V., Rimessi, A., Bianchi, K., Franzin, C., Cortivo, R., Rossato, M., Vettor, R., et al. (2008). High glucose induces adipogenic differentiation of muscle-derived stem cells. Science, 105(4), 1226.

    Google Scholar 

  39. Ivanovic, Z. (2009). Hypoxia or in situ normoxia: the stem cell paradigm. Journal of Cellular Physiology, 219(2), 271.

    Article  MathSciNet  Google Scholar 

  40. De Filippis, L., & ZDelia, D. (2011). Hypoxia in the regulation of neural stem cells. Cellular and Molecular Life Sciences, 68(17), 2831–2844.

    Article  Google Scholar 

  41. Gómez-Sjöberg, R., Leyrat, A., Pirone, D., Chen, C., Stephen, R. (2007). Versatile, fully automated, microfluidic cell culture system. Analytical Chemistry, 79(22), 8557.

    Article  Google Scholar 

  42. Lecault, V., VanInsberghe, M., Sekulovic, S., Knapp, D., Wohrer, S., Bowden, W., Viel, F., McLaughlin, T., Jarandehei, A., Miller, M., et al. (2011). High-throughput analysis of single hematopoietic stem cell proliferation in microfluidic cell culture arrays. Nature Methods, 8(7), 581.

    Article  Google Scholar 

  43. Taylor, R., Falconnet, D., Niemistö, A., Ramsey, S., Prinz, S., Shmulevich, I., Galitski, T., Hansen, C. (2009). Dynamic analysis of MAPK signaling using a high-throughput microfluidic single-cell imaging platform. Proceedings of the National Academy of Sciences, 106(10), 3758.

    Article  Google Scholar 

  44. Wang, Z., Kim, M., Marquez, M., Thorsen, T. (2007). High-density microfluidic arrays for cell cytotoxicity analysis. Lab Chip, 7(6), 740.

    Article  Google Scholar 

  45. Tay, S., Hughey, J., Lee, T., Lipniacki, T., Quake, S., Covert, M. (2010). Single-cell NF-[kgr] B dynamics reveal digital activation and analogue information processing. Nature, 466(7303), 267.

    Article  Google Scholar 

  46. Chin, M., Mason, M., Xie, W., Volinia, S., Singer, M., Peterson, C., Ambartsumyan, G., Aimiuwu, O., Richter, L., Zhang, J., et al. (2009). Induced pluripotent stem cells and embryonic stem cells are distinguished by gene expression signatures. Cell Stem Cell, 5(1), 111.

    Article  Google Scholar 

  47. Kenis, P., Ismagilov, R., Whitesides, G. (1999). Microfabrication inside capillaries using multiphase laminar flow patterning. Science, 285(5424), 83.

    Article  Google Scholar 

  48. Takayama, S., Ostuni, E., LeDuc, P., Naruse, K., Ingber, D., Whitesides, G., et al. (2001). Subcellular positioning of small molecules. Nature, 411(6841), 1016.

    Article  Google Scholar 

  49. Mark, D., Haeberle, S., Roth, G., Von Stetten, F., Zengerle, R. (2010). Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications. Chemical Society Reviews, 39(3), 1153.

    Article  Google Scholar 

  50. Oppegard, S., Nam, K., Carr, J., Skaalure, S., Eddington, D. (2009). Modulating temporal and spatial oxygenation over adherent cellular cultures. PLoS One, 4(9), e6891.

    Article  Google Scholar 

  51. Toley, B., Park, J., Kim, B., Venkatasubramanian, R., Maharbiz, M., Forbes, N. (2011). Micrometer-scale oxygen delivery rearranges cells and prevents necrosis in tumor tissue in vitro. Biotechnology Progress, 28(2), 515–525.

    Article  Google Scholar 

  52. Chung, B., Flanagan, L., Rhee, S., Schwartz, P., Lee, A., Monuki, E., Jeon, N. (2005). Human neural stem cell growth and differentiation in a gradient-generating microfluidic device. Lab Chip, 5(4), 401.

    Article  Google Scholar 

  53. Lo, J., Sinkala, E., Eddington, D. (2010). Oxygen gradients for open well cellular cultures via microfluidic substrates. Lab Chip, 10(18), 2394.

    Article  Google Scholar 

  54. Lucchetta, E., Lee, J., Fu, L., Patel, N., Ismagilov, R. (2005). Dynamics of Drosophila embryonic patterning network perturbed in space and time using microfluidics. Nature, 434(7037), 1134.

    Article  Google Scholar 

  55. Houchmandzadeh, B., Wieschaus, E., Leibler, S., et al. (2002). Establishment of developmental precision and proportions in the early Drosophila embryo. Nature, 415, 798–801.

    Article  Google Scholar 

  56. Jaeger, J., Surkova, S., Blagov, M., Janssens, H., Kosman, D., Kozlov, K., et al. (2004). Dynamic control of positional information in the early Drosophila embryo. Nature, 430(6997), 368.

    Article  Google Scholar 

  57. Blagovic, K., Kim, L., Voldman, J. (2011). Microfluidic perfusion for regulating diffusible signaling in stem cells. PloS One, 6(8), e22892.

    Article  Google Scholar 

  58. Androutsellis-Theotokis, A., Leker, R., Soldner, F., Hoeppner, D., Ravin, R., Poser, S., Rueger, M., Bae, S., Kittappa, R., McKay, R. (2006). Notch signalling regulates stem cell numbers in vitro and in vivo. Nature, 442(7104), 823.

    Article  Google Scholar 

  59. Skelley, A., Kirak, O., Suh, H., Jaenisch, R., Voldman, J. (2009). Microfluidic control of cell pairing and fusion. Nature Methods, 6(2), 147.

    Article  Google Scholar 

  60. Park, J., Cho, C., Parashurama, N., Li, Y., Berthiaume, F., Toner, M., Tilles, A., Yarmush, M. (2007). Microfabrication-based modulation of embryonic stem cell differentiation. Lab Chip, 7(8), 1018.

    Article  Google Scholar 

  61. Justice, B., Badr, N., Felder, R. (2009). 3D cell culture opens new dimensions in cell-based assays. Drug Discovery Today, 14(1–2), 102.

    Article  Google Scholar 

  62. Haycock, J. (2011). 3D cell culture: a review of current approaches and techniques. Methods in Molecular Biology, 695, 1.

    Article  Google Scholar 

  63. Huh, D., Hamilton, G., Ingber, D. (2011). Trends in Cell Biology, 21(12), 745–754.

    Article  Google Scholar 

  64. Leclerc, E., Sakai, Y., Fujii, T. (2003). Cell culture in 3-dimensional microfluidic structure of PDMS (polydimethylsiloxane). Biomedical Microdevices, 5(2), 109.

    Article  Google Scholar 

  65. Albrecht, D., Underhill, G., Wassermann, T., Sah, R., Bhatia, S. (2006). Probing the role of multicellular organization in three-dimensional microenvironments. Nature Methods, 3(5), 369.

    Article  Google Scholar 

  66. Toh, Y., Zhang, C., Zhang, J., Khong, Y., Chang, S., Samper, V., van Noort, D., Hutmacher, D., Yu, H. (2007). A novel 3D mammalian cell perfusion-culture system in microfluidic channels. Lab Chip, 7(3), 302.

    Article  Google Scholar 

  67. Paguirigan, A., & Beebe, D. (2006). Gelatin-based microfluidic devices for cell culture. Lab Chip, 6(3), 407.

    Article  Google Scholar 

  68. Kim, M., Yeon, J., Park, J. (2007). A microfluidic platform for 3-dimensional cell culture and cell-based assays. Biomedical Microdevices, 9(1), 25.

    Article  Google Scholar 

  69. Ong, S., Zhang, C., Toh, Y., Kim, S., Foo, H., Tan, C., van Noort, D., Park, S., Yu, H. (2008). A gel-free 3D microfluidic cell culture system. Biomaterials, 29(22), 3237.

    Article  Google Scholar 

  70. Reya, T., Morrison, S., Clarke, M., Weissman, I. (2001). Stem cells, cancer, and cancer stem cells. Nature, 414, 105.

    Article  Google Scholar 

  71. Singh, S., Clarke, I., Hide, T., Dirks, P. (2004). Cancer stem cells in nervous system tumors. Oncogene, 23(43), 7267.

    Article  Google Scholar 

  72. Wang, J., & Dick, J. (2005). Cancer stem cells: lessons from leukemia. Trends in Cell Biology, 15(9), 494.

    Article  Google Scholar 

  73. Soltysova, A., Altanerova, V., Altaner, C., et al. (2005). Cancer stem cells. Neoplasma, 52(6), 435.

    Google Scholar 

  74. Jordan, C., Guzman, M., Noble, M. (2006). Cancer stem cells. New England Journal of Medicine, 355(12), 1253.

    Article  Google Scholar 

  75. Lugo, T., Pendergast, A., Muller, A., Witte, O. (1990). Tyrosine kinase activity and transformation potency of bcr-abl oncogene products. Science, 247(4946), 1079.

    Article  Google Scholar 

  76. Rowley, J. (1973). A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by Quinacrine Fluorescence and Giemsa Staining. Nature, 243, 290.

    Article  Google Scholar 

  77. Faley, S., Copland, M., Wlodkowic, D., Kolch, W., Seale, K., Wikswo, J., Cooper, J. (2009). Microfluidic single cell arrays to interrogate signalling dynamics of individual, patient-derived hematopoietic stem cells. Lab Chip, 9(18), 2659.

    Article  Google Scholar 

  78. Zhang, Q., Robin, K., Liao, D., Lambert, G., Austin, R. (2011). The goldilocks principle and antibiotic resistance in bacteria. Molecular Pharmaceutics, 8(6), 2063–2068.

    Article  Google Scholar 

  79. Zhang, Q., & Austin, R. (2012). Physics of cancer: the impact of heterogeneity. Annual Review of Condensed Matter Physics, 3, 363–382.

    Article  Google Scholar 

  80. Lambert, G., Estévez-Salmeron, L., Oh, S., Liao, D., Emerson, B., Tlsty, T., Austin, R. (2011). An analogy between the evolution of drug resistance in bacterial communities and malignant tissues. Nature Reviews Cancer, 11(5), 375.

    Article  Google Scholar 

  81. Perez, O., & Nolan, G. (2006). Phospho-proteomic immune analysis by flow cytometry: from mechanism to translational medicine at the single-cell level. Immunological Reviews, 210(1), 208.

    Article  Google Scholar 

  82. Bøyum, A. (1974). Separation of blood leucocytes, granulocytes and lymphocytes. Tissue Antigens, 4(3), 269.

    Article  Google Scholar 

  83. Wachtel, S., Sammons, D., Manley, M., Wachtel, G., Twitty, G., Utermohlen, J., Phillips, O., Shulman, L., Taron, D., Müller, U., et al. (1996). Fetal cells in maternal blood: recovery by charge flow separation. Human Genetics, 98(2), 162.

    Article  Google Scholar 

  84. Baumgarth, N., & Roederer, M. (2000). A practical approach to multicolor flow cytometry for immunophenotyping. Journal of Immunological Methods, 243(1), 77.

    Article  Google Scholar 

  85. Dittrich, P., & Schwille, P. (2003). An integrated microfluidic system for reaction, high-sensitivity detection, and sorting of fluorescent cells and particles. Analytical Chemistry, 75(21), 5767.

    Article  Google Scholar 

  86. Pamme, N. (2006). Magnetism and microfluidics. Lab Chip, 6(1), 24.

    Article  Google Scholar 

  87. Chen, C., Cho, S., Tsai, F., Erten, A., Lo, Y. (2009). Microfluidic cell sorter with integrated piezoelectric actuator. Biomedical Microdevices, 11(6), 1223.

    Article  Google Scholar 

  88. Cho, S., Chen, C., Tsai, F., Godin, J., Lo, Y. (2010). Human mammalian cell sorting using a highly integrated micro-fabricated fluorescence-activated cell sorter (\(\upmu\)FACS). Lab Chip, 10(12), 1567.

    Article  Google Scholar 

  89. Baret, J., Miller, O., Taly, V., Ryckelynck, M., El-Harrak, A., Frenz, L., Rick, C., Samuels, M., Hutchison, J., Agresti, J., et al. (2009). Fluorescence-activated droplet sorting (FADS): efficient microfluidic cell sorting based on enzymatic activity. Lab Chip, 9(13), 1850.

    Article  Google Scholar 

  90. Franke, T., Braunmüller, S., Schmid, L., Wixforth, A., Weitz, D. (2010). Surface acoustic wave actuated cell sorting (SAWACS). Lab Chip, 10(6), 789.

    Article  Google Scholar 

  91. Huang, L., Cox, E., Austin, R., Sturm, J. (2004). Continuous particle separation through deterministic lateral displacement. Science, 304(5673), 987.

    Article  Google Scholar 

  92. Takagi, J., Yamada, M., Yasuda, M., Seki, M. (2005). Continuous particle separation in a microchannel having asymmetrically arranged multiple branches. Lab Chip, 5(7), 778.

    Article  Google Scholar 

  93. Hsu, C., Di, D., Carlo, Chen, C., Irimia, D., Toner, M. (2008). Microvortex for focusing, guiding and sorting of particles. Lab Chip, 8(12), 2128.

    Article  Google Scholar 

  94. Choi, S., Song, S., Choi, C., Park, J. (2007). Continuous blood cell separation by hydrophoretic filtration. Lab Chip, 7(11), 1532.

    Article  Google Scholar 

  95. Toner, M., & Irimia, D. (2005). Blood-on-a-chip. Annual Review of Biomedical Engineering, 7, 77.

    Article  Google Scholar 

  96. Vahey, M., & Voldman, J. (2008). An equilibrium method for continuous-flow cell sorting using dielectrophoresis. Analytical Chemistry, 80(9), 3135.

    Article  Google Scholar 

  97. Cheng, I., Froude, V., Zhu, Y., Chang, H., Chang, H. (2009). A continuous high-throughput bioparticle sorter based on 3D traveling-wave dielectrophoresis. Lab Chip, 9(22), 3193.

    Article  Google Scholar 

  98. Huang, R., Barber, T., Schmidt, M., Tompkins, R., Toner, M., Bianchi, D., Kapur, R., Flejter, W. (2008). A microfluidics approach for the isolation of nucleated red blood cells (NRBCs) from the peripheral blood of pregnant women. Prenatal Diagnosis, 28(10), 892.

    Article  Google Scholar 

  99. Lau, A., Lee, L., Chan, J. (2008). An integrated optofluidic platform for Raman-activated cell sorting. Lab Chip, 8(7), 1116.

    Article  Google Scholar 

  100. Pamme, N. (2007). Continuous flow separations in microfluidic devices. Lab Chip, 7(12), 1644.

    Article  Google Scholar 

  101. Tsutsui, H., & Ho, C. (2009). Cell separation by non-inertial force fields in microfluidic systems. Mechanics Research Communications, 36(1), 92.

    Article  Google Scholar 

  102. Lenshof, A., & Laurell, T. (2010). Continuous separation of cells and particles in microfluidic systems. Chemical Society Reviews, 39(3), 1203.

    Article  Google Scholar 

  103. Gossett, D., Weaver, W., Mach, A., Hur, S., Tse, H., Lee, W., Amini, H., Di Carlo, D. (2010). Label-free cell separation and sorting in microfluidic systems. Analytical and Bioanalytical Chemistry, 397(8), 3249.

    Article  Google Scholar 

  104. Bonnet, D., & Dick, J. (1997). Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature Medicine, 3(7), 730.

    Article  Google Scholar 

  105. Lapidot, T., Sirard, C., Vormoor, J., Murdoch, B., Hoang, T., Caceres-Cortes, J., Minden, M., Paterson, B., Caligiuri, M., Dick, J. (1994). A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature, 367(6464), 645.

    Article  Google Scholar 

  106. Al-Hajj, M., Wicha, M., Benito-Hernandez, A., Morrison, S., Clarke, M. (2003). Prospective identification of tumorigenic breast cancer cells. Proceedings of the National Academy of Sciences, 100(7), 3983.

    Article  Google Scholar 

  107. Singh, S., Hawkins, C., Clarke, I., Squire, J., Bayani, J., Hide, T., Henkelman, R., Cusimano, M., Dirks, P. (2004). Identification of human brain tumour initiating cells. Nature, 432(7015), 396.

    Article  Google Scholar 

  108. Li, C., Heidt, D., Dalerba, P., Burant, C., Zhang, L., Adsay, V., Wicha, M., Clarke, M., Simeone, D. (2007). Identification of pancreatic cancer stem cells. Cancer Research, 67(3), 1030.

    Article  Google Scholar 

  109. Balic, M., Lin, H., Young, L., Hawes, D., Giuliano, A., McNamara, G., Datar, R., Cote, R. (2006). Most early disseminated cancer cells detected in bone marrow of breast cancer patients have a putative breast cancer stem cell phenotype. Clinical Cancer Research, 12(19), 5615.

    Article  Google Scholar 

  110. Aktas, B., Tewes, M., Fehm, T., Hauch, S., Kimmig, R., Kasimir-Bauer, S., et al. (2009). Stem cell and epithelial-mesenchymal transition markers are frequently overexpressed in circulating tumor cells of metastatic breast cancer patients. Breast Cancer Research, 11(4), R46.

    Article  Google Scholar 

  111. Nagrath, S., Sequist, L., Maheswaran, S., Bell, D., Irimia, D., Ulkus, L., Smith, M., Kwak, E., Digumarthy, S., Muzikansky, A., et al. (2007). Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature, 450(7173), 1235.

    Article  Google Scholar 

  112. Meng, S., Tripathy, D., Frenkel, E., Shete, S., Naftalis, E., Huth, J., Beitsch, P., Leitch, M., Hoover, S., Euhus, D., et al. (2004). Circulating tumor cells in patients with breast cancer dormancy. Clinical Cancer Research, 10(24), 8152.

    Article  Google Scholar 

  113. Lo utherback, K., D’Silva, J., Liu, L., Wu, A., Austin, R., Sturm, J. (2012). Deterministic separation of cancer cells from blood at 10 mL/min. Available from Nature Precedings. doi:10101/npre.2012.6861.1.

Download references

Acknowledgements

This work was supported by NSF grant NSF0750323 and National Cancer Institute grant U54CA143803. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Cancer Institute or the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiucen Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Q., Austin, R.H. Applications of Microfluidics in Stem Cell Biology. BioNanoSci. 2, 277–286 (2012). https://doi.org/10.1007/s12668-012-0051-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-012-0051-8

Keywords

Navigation