Skip to main content
Log in

Effect of Addition of Grain Refiner and Modifier on Microstructural and Mechanical Properties of Squeeze Cast A356 Alloy

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Al-Si alloy of grade A356 is widely used in several industries such as automobile, aerospace, defense, and others owing to its low density as well as the combination of other properties such as high strength, excellent castability, excellent thermal conductivity, good corrosion resistance, and good wear/abrasive resistance. In previous studies, the mechanical properties of gravity die-cast Al–Si alloys were found to be improved by the addition of grain refiners such as boron and titanium and also with the addition of modifiers such as strontium. Squeeze casting is pressure-assisted casting process and has been found to improve the mechanical properties of Al alloys. In the current study, the effect of the addition of Al-Ti-B alloys used with the purpose of grain refinement as well as the effect of combined additions of Al-Ti-B and two Sr levels used with the purpose of microstructural modification in squeeze cast Al–Si alloy A356 are investigated. The microstructure developed in various alloy compositions of squeeze cast alloys and the mechanical properties are studied. The effect of T6 solution heat treatment on the squeeze cast alloys is also analyzed. The addition of grain refiner and modifier helped in improving the mechanical properties of the alloy and further heat treatment helped in increasing the properties of the alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Davies J R, Associates, Aluminium and Aluminium Alloys. ASM International, ASM World Headquarter, Material Park, Novelty, OH (1993)

    Google Scholar 

  2. Jakob O, Svensson I L, Pascal L, and Dimitri D, Characterisation and investigation of local variations in mechanical behaviour in cast aluminium using gradient solidification, Digital Image Correlation and finite element simulation. Mater Design (1980–2015) 56 (2014): 755

  3. Kumar, P., and J. L. Gaindhar. "DAS, Solidification Time and Mechanical Properties of Al-11% Si Alloy V-Processed Castings (97-09)." Transactions of the American Foundrymen's Society 105 (1997): 635-638.

    CAS  Google Scholar 

  4. Goulart, Pedro R., José E. Spinelli, Wislei R. Osório, and Amauri Garcia. "Mechanical properties as a function of microstructure and solidification thermal variables of Al–Si castings." Materials Science and Engineering: A 421, no. 1-2 (2006): 245−253.

    Article  CAS  Google Scholar 

  5. Seifeddine, Salem, Sten Johansson, and Ingvar L. Svensson. "The influence of cooling rate and manganese content on the β-Al5FeSi phase formation and mechanical properties of Al–Si-based alloys." Materials Science and Engineering: A 490, no. 1-2 (2008): 385−390.

    Article  CAS  Google Scholar 

  6. Ceschini, Lorella, Iuri Boromei, Alessandro Morri, Salem Seifeddine, and Ingvar L. Svensson. "Microstructure, tensile and fatigue properties of the Al–10% Si–2% Cu alloy with different Fe and Mn content cast under controlled conditions." Journal of Materials Processing Technology 209, no. 15-16 (2009): 5669−5679.

    Article  CAS  Google Scholar 

  7. Caceres, C. H., C. J. Davidson, J. R. Griffiths, and Q. G. Wang. "The effect of Mg on the microstructure and mechanical behavior of Al-Si-Mg casting alloys." Metallurgical and materials transactions A 30, no. 10 (1999): 2611−2618.

    Article  Google Scholar 

  8. Stadler, F., H. Antrekowitsch, W. Fragner, H. Kaufmann, E. R. Pinatel, and Peter J. Uggowitzer. "The effect of main alloying elements on the physical properties of Al–Si foundry alloys." Materials Science and Engineering: A 560 (2013): 481−491.

    Article  CAS  Google Scholar 

  9. Sritharan, T., and H. Li. "Influence of titanium to boron ratio on the ability to grain refine aluminium-silicon alloys." Journal of Materials Processing Technology 63, no. 1-3 (1997): 585-589.

    Article  Google Scholar 

  10. Jones, G. Pcarson, and J. Pearson. "Factors affecting the grain-refinement of aluminum using titanium and boron additives." Metallurgical Transactions B 7, no. 2 (1976): 223-234.

    Article  Google Scholar 

  11. Mayes, C. D., D. G. McCartney, and G. J. Tatlock. "Influence of microstructure on grain refining performance of Al–Ti–B master alloys." Materials science and technology 9, no. 2 (1993): 97-103.

    Article  CAS  Google Scholar 

  12. Mohanty, P. S., and J. E. Gruzleski. "Grain refinement mechanisms of hypoeutectic Al Si alloys." Acta materialia 44, no. 9 (1996): 3749-3760.

    Article  CAS  Google Scholar 

  13. Spittle, J. A. "Grain refinement in shape casting of aluminium alloys." International Journal of Cast Metals Research 19, no. 4 (2006): 210-222.

    Article  CAS  Google Scholar 

  14. Schumacher, P. "Nucleation Mechanisms during Grain Refinement of Al-Si-Alloys." Giesserei-Rundschau 50 (2003): 228-230.

    CAS  Google Scholar 

  15. Mohanty, P. S., F. H. Samuel, and J. E. Gruzleski. "Studies on addition of inclusions to molten aluminum using a novel technique." Metallurgical and Materials Transactions B 26, no. 1 (1995): 103-109.

    Article  Google Scholar 

  16. Nafisi, Shahrooz, and Reza Ghomashchi. "Boron-based refiners: implications in conventional casting of Al–Si alloys." Materials Science and Engineering: A 452 (2007): 445-453.

    Article  CAS  Google Scholar 

  17. Lu, L., and A. K. Dahle. "Effects of combined additions of Sr and AlTiB grain refiners in hypoeutectic Al–Si foundry alloys." Materials Science and Engineering: A 435 (2006): 288-296.

    Article  CAS  Google Scholar 

  18. Limmaneevichitr, C., and W. Eidhed. "Fading mechanism of grain refinement of aluminum–silicon alloy with Al–Ti–B grain refiners." Materials Science and Engineering: A 349, no. 1-2 (2003): 197-206

    Article  Google Scholar 

  19. Ghomashchi, Reza. "The evolution of AlTiSi intermetallic phases in Ti-added A356 Al–Si alloy." Journal of Alloys and Compounds 537 (2012): 255-260.

    Article  CAS  Google Scholar 

  20. Lee, Choongdo. "Effect of Ti-B addition on the variation of microporosity and tensile properties of A356 aluminium alloys." Materials Science and Engineering: A 668 (2016): 152-159.

    Article  CAS  Google Scholar 

  21. Sokolowski, J. H., C. A. Kierkus, B. Brosnan, and W. J. Evans. "Formation of Insoluble Ti (Al, Si) 3 Crystals in 356 Alloy Castings and Their Sedimentation in Foundry Equipment: Causes, Effects and Solutions (00-21)." Transactions of the American Foundrymen's Society 108 (2000): 491-496

    CAS  Google Scholar 

  22. Birol, Y. "Grain refinement of pure aluminium and Al–7Si with Al–3B master alloy." Materials Science and Technology 28, no. 3 (2012): 363-367.

    Article  CAS  Google Scholar 

  23. Couture, A. A. F. S. "Iron in aluminum casting alloys-a literature survey." International cast metals journal 6, no. 4 (1981): 9-17.

    Google Scholar 

  24. Kori S. Auradi A V, Murty B S, and Chakraborty M. Poisoning and fading mechanism of grain refinement in Al-7Si alloy. In:  Proceedings of 3rd international conference on advanced materials processing (ICAMP-3), 387–393. Processing (ICAMP-3), Melbourne, Australia, 2004.

  25. Haro-Rodríguez, Sergio, Rafael E. Goytia-Reyes, Dheerendra Kumar Dwivedi, Víctor H. Baltazar-Hernández, Horacio Flores-Zúñiga, and María J. Pérez-López. "On influence of Ti and Sr on microstructure, mechanical properties and quality index of cast eutectic Al–Si–Mg alloy." Materials & Design 32, no. 4 (2011): 1865-1871.

    Article  CAS  Google Scholar 

  26. Crosley, Phillip Bernard, and L. F. Mondolfo. "The modification of aluminum-silicon alloys." Mod Cast 49, no. 3 (1966): 99-100.

    Google Scholar 

  27. Lu, Shu-Zu, and A. Hellawell. "The mechanism of silicon modification in aluminum-silicon alloys: Impurity induced twinning." Metallurgical Transactions A 18, no. 10 (1987): 1721-1733.

    Article  Google Scholar 

  28. Qiu, D., J. A. Taylor, M. X. Zhang, and P. M. Kelly. "A mechanism for the poisoning effect of silicon on the grain refinement of Al–Si alloys." Acta Materialia 55, no. 4 (2007): 1447-1456.

    Article  CAS  Google Scholar 

  29. Liao, Hengcheng, and Guoxiong Sun. "Mutual poisoning effect between Sr and B in Al–Si casting alloys." Scripta materialia 48, no. 8 (2003): 1035-1039.

    Article  CAS  Google Scholar 

  30. Timpel, M., N. Wanderka, R. Schlesiger, T. Yamamoto, N. Lazarev, D. Isheim, G. Schmitz, S. Matsumura, and J. Banhart. "The role of strontium in modifying aluminium–silicon alloys." Acta Materialia 60, no. 9 (2012): 3920-3928.

    Article  CAS  Google Scholar 

  31. Nogita, Kazuhiro, Stuart David McDonald, and Arne Kristian Dahle. "Effects of boron-strontium interactions on eutectic modification in Al-10 mass% Si alloys." Materials Transactions 44, no. 4 (2003): 692-695.

    Article  Google Scholar 

  32. Chatterjee S, Some observations on the effect of pressure on the solidification of Al-Si eutectic alloys. (1973).

  33. Chatterjee S, Effects of pressure on the solidification of some commercial aluminium-base casting alloys. (1972).

  34. Chadwick, G. A., and Tai Man Yue. "Principles and applications of squeeze casting." Metals and materials Bury St Edmunds 5, no. 1 (1989): 6-12.

    CAS  Google Scholar 

  35. Dong, J. X., P. A. Karnezis, G. Durrant, and B. Cantor. "The effect of Sr and Fe additions on the microstructure and mechanical properties of a direct squeeze cast Al-7Si-0.3 Mg alloy." Metallurgical and materials transactions A 30 (1999): 1341.

    Article  Google Scholar 

  36. Okada, S., N. Fujii, A. Goto, S. Morimoto, and T. Yasuda. "Development of a full automatic squeeze casting machine." AFS Transactions 82 (1982): 135.

    Google Scholar 

  37. Shivkumar, S., S. Ricci, B. Steenhoff, D. Apelian, and G. Sigworth. "An experimental study to optimize the heat treatment of A356 alloy." AFS Transactions 97 (1989): 791.

    Google Scholar 

  38. Guodong, Wan Li1 Luo Jirong1 Lan, and Qionghua L, Mechanical properties and microstructures of squeezed and cast hypereutectic A390 alloy [J]. J Huazhong Univ Sci Technol (Nat Sci Edition) 8 (2008).

  39. Ma, Z., E. Samuel, A. M. A. Mohamed, A. M. Samuel, F. H. Samuel, and H. W. Doty. "Influence of aging treatments and alloying additives on the hardness of Al–11Si–2.5 Cu–Mg alloys." Materials & Design 31 (2010): 3791.

    Article  CAS  Google Scholar 

  40. Ma Z, Samuel E, Mohamed A M A, Samuel A M, Samuel F H, and Doty H W. Parameters controlling the microstructure of Al–11Si–2.5 Cu–Mg alloys. Mater Design 31(2010): 3791.

  41. Abou El-khair, M. T. "Microstructure characterization and tensile properties of squeeze-cast AlSiMg alloys." Materials Letters 59, no. 8-9 (2005): 894-900

    Article  CAS  Google Scholar 

  42. Mulazimoglu M H, Electrical conductivity studies of cast Al-Si and Al-Si-Mg alloys Ph.D. Thesis, 1988, McGill University, Montreal, PQ, Canada.

  43. H.J Li, S. Shivkumar, X.J. Luo and D. Apelian: "Influence of Modification on The Solution Heat Treatment Response of Cast Al-Si-Mg Alloys", Cast Metals, Vol. 1, 1989, pp. 227-234

    Article  Google Scholar 

  44. I. Kovacs, J. Lendvai and E. Nagy: "Mechanism of Clustering in Supersaturated Solid Solutions AI-Mg2Si Alloys. "Acta Metallurgica, Vol.20, 1972, pp. 975-983.

    Article  CAS  Google Scholar 

  45. Gupta A K and Lloyd D J, In: Aluminum alloys, their physical and mechanical properties (ICAA3), L. Arnberg, O. Lohne, E. Nes and N. Ryum, eds. The Norwegian Institute of Technology, Trondheim, 2 (1992), 21.

  46. Kashyap, K. T., and T. Chandrashekar. "Effects and mechanisms of grain refinement in aluminium alloys." Bulletin of Materials Science 24, no. 4 (2001): 345-353.

    Article  CAS  Google Scholar 

  47. Cooper P, Hardman A, Boot D, and Burhop E, Characterisation of a new generation of grain refiners for the foundry industry." In: LIGHT METALS-WARRENDALE-PROCEEDINGS-, 923–928. TMS, 2003.

  48. Lu L, and Arne K. Dahle, Effects of Sr and B interactions in hypoeutectic Al–Si foundry alloys. Light metals (2006): 807.

  49. Spittle J A, Grain refinement in shape casting of aluminium alloys (2006): 210.

  50. Wang, Tongmin, Hongwang Fu, Zongning Chen, Jun Xu, Jing Zhu, Fei Cao, and Tingju Li. "A novel fading-resistant Al–3Ti–3B grain refiner for Al–Si alloys." Journal of alloys and compounds 511, no. 1 (2012): 45-49.

    Article  CAS  Google Scholar 

  51. Gazanion F, Grant Chen X, and Dupuis C, Studies on the sedimentation and agglomeration behavior of Al-Ti-B and Al-Ti-C grain refiners." In Materials science forum, 396, p 45–52. Trans Tech Publications Ltd, 2002.

  52. Schneider W, Kearns M A, McGarry M J, and Whitehead A J, A comparison of the behaviour of AlTiB and AlTiC grain refiners. In: Essential readings in light metals, p 400–408. Springer, Cham, 2016.

  53. Talaat M M, Salah S, Ezz S, and El-Sayed M. El-Banna. GRAIN REFINEMENT OF Al-3 AND 5% Si ALLOYS.

  54. Zamkotowicz Z, Stuczynski T, Augustyn B, Lech-Grega M, and Wezyk W, Investigation of grain refinement fading in hypoeutectic aluminium-silicon alloys. In: LIGHT METALS-WARRENDALE-PROCEEDINGS-, p 807–816. TMS, 2004.

  55. Wang, Tongmin, Yuanping Zheng, Zongning Chen, Yufei Zhao, and Huijun Kang. "Effects of Sr on the microstructure and mechanical properties of in situ TiB2 reinforced A356 composite." Materials & Design 64 (2014): 185-193.

    Article  CAS  Google Scholar 

  56. Tan, Pan, Yi Yang, Yudong Sui, Qudong Wang, and Yehua Jiang. "The influence of Al–10Sr or/and Al–5Ti–1B on microstructure and mechanical properties of Al–12Si–4Cu–2Ni–0.8 Mg alloys." Journal of Alloys and Compounds 809 (2019): 151856.

    Article  CAS  Google Scholar 

  57. Samuel A M, Doty H W, Valtierra S, and Samuel F H, Effect of grain refining and Sr-modification interactions on the impact toughness of Al–Si–Mg cast alloys. Mater Design (1980–2015) 56 (2014) 264.

  58. Kori S A, Auradi V, Murty B S, Chakraborty M, Poisoning and fading mechanism of grain refinement in Al-7Si alloy. In: Proceedings of 3rd international conference on advanced materials processing (ICAMP-3), p 387–393. Processing (ICAMP-3), Melbourne, Australia, 2004.

  59. Mohanty, P. S., and J. E. Gruzleski. "Mechanism of grain refinement in aluminium." Acta Metallurgica et Materialia 43, no. 5 (1995): 2001-2012.

    Article  CAS  Google Scholar 

  60. Iqbal, N., N. H. Van Dijk, S. E. Offerman, M. P. Moret, L. Katgerman, and G. J. Kearley. "Real-time observation of grain nucleation and growth during solidification of aluminium alloys." Acta Materialia 53, no. 10 (2005): 2875-2880.

    Article  CAS  Google Scholar 

  61. Murty, B. S., S. A. Kori, and M. Chakraborty. "Grain refinement of aluminium and its alloys by heterogeneous nucleation and alloying." International Materials Reviews 47, no. 1 (2002): 3-29

    Article  CAS  Google Scholar 

  62. Greer A L, Quested T E, and Spalding J E, Modelling of grain refinement in directional solidification. In:  LIGHT METALS-WARRENDALE-PROCEEDINGS-, p 687–694. TMS, 2002

  63. Emadi D, Whiting l V, Sahoo M, Sokolowski J H, Burke P, and Hart M. Optimal heat treatment of A356. 2 alloy. In LIGHT METALS-WARRENDALE-PROCEEDINGS-, p 983–990. TMS, 2003.

  64. Croucher T, and Butler D, Polymer quenching of aluminum castings. In 26th National SAMPE Symposium, p 527–535. 1981.

  65. Totten G E, and Mackenzie D S Aluminum quenching technology: a review. In: Materials science forum, 331, p 589–594. Trans Tech Publications Ltd, 2000.

  66. Sverdlin, A. V., G. E. Totten, and G. M. Vebster. "Polyalkyleneglycol base quenching media for heat treatment of aluminum alloys." Metallovedenie i Termicheskaya Obrabotka Metallov 6 (1996): 17-19.

    Google Scholar 

  67. Senatorova O G, Sidelnikov V V, Mihailova I F, Fridlyander I N, Bedarev A S, Spector J I, Tihonova L A Low distortion quenching of aluminium alloys in polymer medium. In: Materials science forum, 396, p 1659–1664. Trans Tech Publications Ltd, 2002.

  68. Beitz, H. Non-combustible water-based quenchants in forging shops for automotive parts--latest development. In: 1 st international automotive heat treating conference, p 106–109. 1998.

  69. Zhang, D. L., and L. Zheng. "The quench sensitivity of cast Al-7 wt pct Si-0.4 wt pct Mg alloy." Metallurgical and Materials Transactions A 27, no. 12 (1996): 3983-3991.

    Article  Google Scholar 

  70. Mohamed A M A, and Samuel F H A review on the heat treatment of Al-Si-Cu/Mg casting alloys. Heat treatment-conventional and novel applications (2012): 55–72.

  71. Wahyuningtyas P, Syahrial A Z, Putra W N, and Utomo B W. Effect of T6 on mechanical properties of TiB and Sr modified ADC12/SiC composite produced by stir casting. In: E3S web of conferences, 130, 01023. EDP Sciences, 2019.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reeturaj Tamuly.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tamuly, R., Behl, A. & Borkar, H. Effect of Addition of Grain Refiner and Modifier on Microstructural and Mechanical Properties of Squeeze Cast A356 Alloy. Trans Indian Inst Met 75, 2395–2408 (2022). https://doi.org/10.1007/s12666-022-02607-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-022-02607-4

Keywords

Navigation