Skip to main content
Log in

Spectroscopic Assessment of Sugarcane Bagasse Mediated Vermicompost for Qualitative Enrichment of Animal Wastes Elephus maximus and Bos taurus

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The vermicomposting process using sugarcane bagasse as substrate with cow dung and elephant dung were evaluated by using earthworm Eudrilus eugeniae. The significant of the current study to create a biological alternative and humification process for open-air decomposed debris of sugarcane crop residue and animal dungs by using earthworm. FT-IR and GC–MS analysis was performed to determine the maturity and stability stage of vermicompost in the initial and 90th day substrates. The zero day raw material had found 25 organic compounds which was increased to 30 compounds after 90th day of vermicomposting. FT-IR spectroscopy demonstrated that distinct biochemical functional groups included in wastes, underwent variable chemical changes and turnover during vermicomposting. GC–MS profile revealed that existence of numerous humic acids in the predominant level of metabolites and disintegrating compounds viz., Hexadecanoic acid methyl ester (14.89%), Benzenepropanoic acid 3,5-bis(1,1-dimethylethyl)-4-hydroxy-methylester (108.53%), Octadecanoic acid (8.98%), Dodecanoic acid methyl ester (1.99%), Methyl tetradecanoate (1.36%) and interestingly absence of toxic compounds, its clearly demonstrating as an indicator of substrate maturity. All the biochemical compounds are considered biologically and pharmacologically important and this was supported by a fall in the humification index, which focuses on the joint action of earthworms and bacteria in the decomposition of organic substrates. The technique FT-IR verified the mineralization process and formation of a significant amount of carboxylic and aliphatic group degradation and GC–MS profile found the turnover of different organic components in chemical footprints and it were proved to be more promising fast, reliable and conventional method. Therefore, the current study can be regarded as a comprehensive eco-biochemical method that will open a new vista on the significance of sugarcane bagasse for solid waste management. Finally, it was found that the amount of solid waste dumped in landfills could be greatly reduced and that industrial waste could be transformed into high-quality vermicompost.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

Abbreviations

GC–MS :

Gas chromatography mass spectroscopy

FT-IR :

Fourier transform infrared spectroscopy

S1 :

Sugarcane bagasse + 100% cow dung

S2 :

Sugarcane bagasse + 100% elephant dung

S3 :

Sugarcane bagasse + 50% cow dung + 50% elephant dung

References

  1. Hussain, N., Abbasi, T., Abbasi, S.A.: Transformation of the pernicious and toxic weed parthenium into an organic fertilizer by vermicomposting. Int. J. Environ. Stud. 73, 731–745 (2016). https://doi.org/10.1080/00207233.2016.1185327

    Article  Google Scholar 

  2. Ganguly, R.K., Chakraborty, S.K.: Qualitative assessment of paper mill waste valorization through combinatorial PLFA markers and spectroscopical analysis: an ecotechnology towards biotransformation of waste to resource. Environ. Technol. Innov. 23, 101532 (2021). https://doi.org/10.1016/j.eti.2021.101532

    Article  Google Scholar 

  3. Mothé, C.G., De Miranda, I.C.: Characterization of sugarcane and coconut fibers by thermal analysis and FTIR. J. Therm. Anal. Calorim. 97, 661–665 (2009). https://doi.org/10.1007/s10973-009-0346-3

    Article  Google Scholar 

  4. Bortolotto Teixeira, L., Guzi de Moraes, E., Paolinelli Shinhe, G., Falk, G., Novaes de Oliveira, A.P.: Obtaining biogenic silica from sugarcane bagasse and leaf ash. Waste Biomass Valorization 12, 3205–3221 (2021). https://doi.org/10.1007/s12649-020-01230-y

    Article  Google Scholar 

  5. Parker, P.D.: Lake Arthur field: Jefferson Davis Parish, Louisiana. 16–16C (1970)

  6. Jacobs, J., Kreutzer, R., Smith, D.: Rice burning and asthma hospitalizations, Butte County, California, 1983–1992. Environ. Health Perspect. 105, 980–985 (1997). https://doi.org/10.1289/ehp.97105980

    Article  Google Scholar 

  7. Balachandar, R., Baskaran, L., Yuvaraj, A., Thangaraj, R., Subbaiya, R., Ravindran, B., Chang, S.W., Karmegam, N.: Enriched pressmud vermicompost production with green manure plants using Eudrilus eugeniae. Bioresour. Technol. 299, 122578 (2020). https://doi.org/10.1016/j.biortech.2019.122578

    Article  Google Scholar 

  8. Pellejero, G., Rodriguez, K., Ashchkar, G., Vela, E., García-Delgado, C., Jiménez-Ballesta, R.: Onion waste recycling by vermicomposting: nutrients recovery and agronomical assessment. Int. J. Environ. Sci. Technol. 17, 3289–3296 (2020). https://doi.org/10.1007/s13762-020-02685-1

    Article  Google Scholar 

  9. Ramírez-Estrada, A., Mena-Cervantes, V.Y., Mederos-Nieto, F.S., Pineda-Flores, G., Hernández-Altamirano, R.: Assessment and classification of lignocellulosic biomass recalcitrance by principal components analysis based on thermogravimetry and infrared spectroscopy. Int. J. Environ. Sci. Technol. 19, 2529–2544 (2022). https://doi.org/10.1007/s13762-021-03309-y

    Article  Google Scholar 

  10. Deepthi, M.P., Saminathan, K., Rini, J., Kathireswari, P.: Materials today: proceedings chemical foot print of precomposted dung material of Elephus maximus and Bos taurus through GC–MS profile. Mater.Today: Proc. (2020). https://doi.org/10.1016/j.matpr.2020.06.458

    Article  Google Scholar 

  11. Rini, J., Deepthi, M.P., Saminathan, K., Narendhirakannan, R.T., Karmegam, N., Kathireswari, P.: Nutrient recovery and vermicompost production from livestock solid wastes with epigeic earthworms. Bioresour. Technol. 313, 123690 (2020). https://doi.org/10.1016/j.biortech.2020.123690

    Article  Google Scholar 

  12. Joseph, R., Saminathan, K., Deepthi, M.P., Kathireswari, P.: Comparative analysis on bioactive compounds presents in dung material of Bos taurus and Bos indicus. Mater. Today Proc. 48, 181–185 (2019). https://doi.org/10.1016/j.matpr.2020.06.457

    Article  Google Scholar 

  13. Preethee, S., Kathireswari, P., Haripriya, K.S., Sanofar, MF., Deepthi, MP., Saminathan, K., Efficacy of Vermicompost on Growth of Mulberry plant through Air Layering. Journal of Advanced Scientific Research. Oct 31, 12, (03 Suppl 2), 170-9 (2021)

  14. Taylor, P., Gajalakshmi, S., Abbasi, S.A.: Solid waste management by composting: state of the art. Crit. Rev. Environ. Sci. Technol. (2008). https://doi.org/10.1080/10643380701413633

    Article  Google Scholar 

  15. Margenot, A.J., Calderón, F.J., Parikh, S.J.: Limitations and potential of spectral subtractions in fourier-transform infrared spectroscopy of soil samples. Soil Sci. Soc. Am. J. 80, 10–26 (2016). https://doi.org/10.2136/sssaj2015.06.0228

    Article  Google Scholar 

  16. Gupta, R., Garg, V.K.: Vermiremediation and nutrient recovery of non-recyclable paper waste employing Eisenia fetida. J. Hazard. Mater. 162, 430–439 (2009). https://doi.org/10.1016/j.jhazmat.2008.05.055

    Article  Google Scholar 

  17. Ganguly, R.K., Chakraborty, S.K.: Assessment of qualitative enrichment of organic paper mill wastes through vermicomposting: humification factor and time of maturity. Heliyon 5, e01638 (2019). https://doi.org/10.1016/j.heliyon.2019.e01638

    Article  Google Scholar 

  18. Fang, T.Y., Praveena, S.M., deBurbure, C., Aris, A.Z., Ismail, S.N.S., Rasdi, I.: Analytical techniques for steroid estrogens in water samples—a review. Chemosphere 165, 358–368 (2016). https://doi.org/10.1016/j.chemosphere.2016.09.051

    Article  Google Scholar 

  19. Tagg, A.S., Sapp, M., Harrison, J.P., Ojeda, J.J.: Identification and quantification of microplastics in wastewater using focal plane array-based reflectance micro-FT-IR imaging. Anal. Chem. 87, 6032–6040 (2015). https://doi.org/10.1021/acs.analchem.5b00495

    Article  Google Scholar 

  20. Fels, E.l., Zamama, L., Hafidi, M.: Advantages and limitations of using FTIR spectroscopy for assessing the maturity of sewage sludge and olive oil waste co-composts. Biodegradation and Bioremediation of Polluted Systems - New Advances and Technologies (2015). https://doi.org/10.5772/60943

  21. Bhat, S.A., Singh, J., Vig, A.P.: Instrumental characterization of organic wastes for evaluation of vermicompost maturity. J. Anal. Sci. Technol. (2017). https://doi.org/10.1186/s40543-017-0112-2

    Article  Google Scholar 

  22. Pacáková, V., Loukotková, L., Bosáková, Z., Štulík, K.: Analysis for estrogens as environmental pollutants—a review. J. Sep. Sci. 32, 867–882 (2009). https://doi.org/10.1002/jssc.200800673

    Article  Google Scholar 

  23. Svečnjak, L., Baranović, G., Vinceković, M., Prđun, S., Bubalo, D., Gajger, I.T.: N approach for routine analytical detection of beeswax adulteration using ftir-atr spectroscopy. J. Apic. Sci. 59, 37–49 (2015). https://doi.org/10.1515/JAS-2015-0018

    Article  Google Scholar 

  24. Bernabé, G.A., Almeida, S., Ribeiro, C.A., Crespi, M.S.: Evaluation of organic molecules originated during composting process. J. Therm. Anal. Calorim. 106, 773–778 (2011). https://doi.org/10.1007/s10973-011-1420-1

    Article  Google Scholar 

  25. Khalil, K.M.S., Khairy, M., Allam, O.A.S., Khalil, M.K.: Formation of improved activated carbons from sugarcanebagasse as environmental materials for adsorption of phenolic pollutants. Int. J. Environ. Sci. Technol. 19, 3103–3116 (2022). https://doi.org/10.1007/s13762-021-03382-3

    Article  Google Scholar 

  26. Deepthi, M.P., Kathireswari, P., Rini, J., Saminathan, K., Karmegam, N.: Vermitransformation of monogastric Elephas maximus and ruminant Bos taurus excrements into vermicompost using Eudrilus eugeniae. Bioresour. Technol. 320, 124302 (2021). https://doi.org/10.1016/j.biortech.2020.124302

    Article  Google Scholar 

  27. Preethee, S., Saminathan, K., Chandran, M., Kathireswari, P.: Valorization of phyto-biomass with tertiary combination of animal dung for enriched vermicompost production. Environ. Res. 215, 114365 (2022). https://doi.org/10.1016/j.envres.2022.114365

    Article  Google Scholar 

  28. Rajiv, P., Rajeshwari, S., Venckatesh, R.: Fourier transform-infrared spectroscopy and gas chromatography-mass spectroscopy: reliable techniques for analysis of Parthenium mediated vermicompost. Spectrochim. Acta—Part A Mol. Biomol. Spectrosc. 116, 642–645 (2013). https://doi.org/10.1016/j.saa.2013.08.012

    Article  Google Scholar 

  29. Souza, B.S., Moreira, A.P.D., Teixeira, A.M.R.F.: TG-FTIR coupling to monitor the pyrolysis products from agricultural residues. J. Therm. Anal. Calorim. 97, 637–642 (2009). https://doi.org/10.1007/s10973-009-0367-y

    Article  Google Scholar 

  30. Ravindran, B., Sravani, R., Mandal, A.B., Contreras-Ramos, S.M., Sekaran, G.: Instrumental evidence for biodegradation of tannery waste during vermicomposting process using Eudrilus eugeniae. J. Therm. Anal. Calorim. 111, 1675–1684 (2013). https://doi.org/10.1007/s10973-011-2081-9

    Article  Google Scholar 

  31. Réveillé, V., Mansuy, L., Jardé, É., Garnier-Sillam, É.: Characterisation of sewage sludge-derived organic matter: lipids and humic acids. Org. Geochem. 34, 615–627 (2003). https://doi.org/10.1016/S0146-6380(02)00216-4

    Article  Google Scholar 

  32. Dumitrescu, L., Sauciuc, A., Manciulea, I., Zaha, C.: Obtaining biofertilizer by composting vegetable waste, sewage sludge and sawdust. Bull. Transilv. Univ. Braşov Ser. I Eng. Sci. 2, 117–122 (2009)

    Google Scholar 

  33. Barriga, S., Méndez, A., Cámara, J., Guerrero, F., Gascó, G.: Agricultural valorisation of de-inking paper sludge as organic amendment in different soils: thermal study. J. Therm. Anal. Calorim. 99, 981–986 (2010). https://doi.org/10.1007/s10973-010-0692-1

    Article  Google Scholar 

  34. Senesi, N., D’Orazio, V., Ricca, G.: Humic acids in the first generation of EUROSOILS. Geoderma 116, 325–344 (2003). https://doi.org/10.1016/S0016-7061(03)00107-1

    Article  Google Scholar 

  35. Province, S.: Ournal of. Asian J. Chem. 26, 6097–6100 (2014)

    Google Scholar 

  36. Grube, M., Lin, J.G., Lee, P.H., Kokorevicha, S.: Evaluation of sewage sludge-based compost by FT-IR spectroscopy. Geoderma 130, 324–333 (2006). https://doi.org/10.1016/j.geoderma.2005.02.005

    Article  Google Scholar 

  37. Filip, Z., Bielek, P.: Susceptibility of humic acids from soils with various contents of metals to microbial utilization and transformation. Biol. Fertil. Soils 36, 426–433 (2002). https://doi.org/10.1007/s00374-002-0559-0

    Article  Google Scholar 

  38. González, J.A., González-Vila, F.J., Almendros, G., Zancada, M.C., Polvillo, O., Martín, F.: Preferential accumulation of selectively preserved biomacromolecules in the humus fractions from a peat deposit as seen by analytical pyrolysis and spectroscopic techniques. J. Anal. Appl. Pyrolysis. 68–69, 287–298 (2003). https://doi.org/10.1016/S0165-2370(03)00069-X

    Article  Google Scholar 

  39. Srivastava, V., Goel, G., Thakur, V.K., Singh, R.P., Ferreira de Araujo, A.S., Singh, P.: Analysis and advanced characterization of municipal solid waste vermicompost maturity for a green environment. J. Environ. Manage. (2020). https://doi.org/10.1016/j.jenvman.2019.109914

    Article  Google Scholar 

  40. Paul, S., Kauser, H., Jain, M.S., Khwairakpam, M., Kalamdhad, A.S.: Biogenic stabilization and heavy metal immobilization during vermicomposting of vegetable waste with biochar amendment. J. Hazard. Mater. 390, 121366 (2020). https://doi.org/10.1016/j.jhazmat.2019.121366

    Article  Google Scholar 

  41. Ravindran, B., Dinesh, S.L., Kennedy, L.J., Sekaran, G.: Vermicomposting of solid waste generated from leather industries using epigeic earthworm Eisenia Foetida. Appl. Biochem. Biotechnol. 151, 480–488 (2008). https://doi.org/10.1007/s12010-008-8222-3

    Article  Google Scholar 

  42. Arumugam, K., Renganathan, S., Babalola, O.O., Muthunarayanan, V.: Investigation on paper cup waste degradation by bacterial consortium and Eudrillus eugeinea through vermicomposting. Waste Manag. 74, 185–193 (2018). https://doi.org/10.1016/j.wasman.2017.11.009

    Article  Google Scholar 

  43. Ahmed, R., Deka, H.: Vermicomposting of patchouli bagasse—A byproduct of essential oil industries employing Eisenia fetida. Environ. Technol. Innov. 25, 102232 (2022). https://doi.org/10.1016/j.eti.2021.102232

    Article  Google Scholar 

  44. Chandra, R., Yadav, S., Yadav, S.: Phytoextraction potential of heavy metals by native wetland plants growing on chlorolignin containing sludge of pulp and paper industry. Ecol. Eng. 98, 134–145 (2017). https://doi.org/10.1016/j.ecoleng.2016.10.017

    Article  Google Scholar 

  45. Subhash Kumar, M., Rajiv, P., Rajeshwari, S., Venckatesh, R.: Spectroscopic analysis of vermicompost for determination of nutritional quality. Spectrochim. Acta—Part A Mol Biomol. Spectrosc. 135, 252–255 (2015). https://doi.org/10.1016/j.saa.2014.07.011

    Article  Google Scholar 

  46. Ahmad, B.: Chemical composition and antifungal, phytotoxic, brine shrimp cytotoxicity, insecticidal and antibacterial activities of the essential oils of Acacia modesta. J. Med. Plants Res. 6, 4653–4659 (2012). https://doi.org/10.5897/jmpr12.016

    Article  Google Scholar 

  47. Sharma, K., Kaur, S., Kumar, N.: Cow urine prominence to humanity. J. Pharmacogn. Phytochem. 9, 459–465 (2020)

    Google Scholar 

  48. Joseph, R., Kathireswari, P.: Efficacy leaf litters as substrate on reproductive potential of epigeic earthworm Eudrilus eugeniae. Indian J. Ecol. 47, 186–189 (2020)

    Google Scholar 

  49. Grover, N., Patni, V.: Phytochemical characterization using various solvent extracts and GC-MS analysis of methanolic extract of Woodfordia fruticosa (L.) Kurz. leaves. Int. J. Pharm. Pharm. Sci. 5, 291–295 (2013)

    Google Scholar 

  50. Jirankalgikar, N., Nariya, P., De, S.: In vitro antioxidant activity evaluation and HPTLC profile of cow dung. Int. J. Green Pharm. 8, 158–162 (2014). https://doi.org/10.4103/0973-8258.140172

    Article  Google Scholar 

Download references

Acknowledgements

We thank to University Grants Commission-College of Excellence (UGC-CE), New Delhi funding for Instruments facilities (FT-IR, Shimatzu IR Sprit make and AAS SL168 Elico make) in the Department of Chemistry, Kongunadu Arts and Science College, Coimbatore” and for GCMS analysis the Instrument (Agilent GC 7890A / MS5975C) facilities provided by TUV SUD South Asia Pvt Ltd., Tirupur and the authors wish to thank the management of Kongunadu Arts and Science College, Coimbatore, Tamil Nadu for provide the infrastructure facility to carry out the research work.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathireswari Palanisamy.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saravanan, P., Palanisamy, K. & Kulandaivelu, S. Spectroscopic Assessment of Sugarcane Bagasse Mediated Vermicompost for Qualitative Enrichment of Animal Wastes Elephus maximus and Bos taurus. Waste Biomass Valor 14, 2133–2149 (2023). https://doi.org/10.1007/s12649-022-02011-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-022-02011-5

Keywords

Navigation