Skip to main content
Log in

Vermicomposting of Solid Waste Generated from Leather Industries Using Epigeic Earthworm Eisenia foetida

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Animal fleshing (ANFL) generated as solid waste from tannery industries was vermicomposted using the epigeic earthworm Eisenia foetida. The mixing ratio of ANFL with cow dung and agricultural residues as feed mixtures was maintained to be 3:1:1 respectively during the vermicomposting experiments for 50 days. Vermicomposting resulted in the reduction of pH 6.74 and C:N ratio 15.5 compared to the control sample. A notable increase in earthworm biomass was also observed in the vermin bioreactor. The germination index of 84% for tomato seedlings (Lycopersicon esculentum cv. PKM1) was observed for the vermicomposted soil. Scanning electron microscope and Fourier transform infrared spectroscopy were recorded to identify the changes in surface morphology and functional groups in the control and vermicomposted samples. The results obtained from the present study indicated that the earthworm E. foetida was able to convert ANFL into nutrient-enriched products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Gopikrishna Warrier, S. Fleshing no more a waste 2001. Available from: www.hindu.com/businessline. Accessed September 10, 2001.

  2. Ramasami, T., & Ranganayaki, M. D. (2001). Technologies for value realization of carcass by products in developing countries—a hand book. Chennai: Central Leather Research Institute (C.L.R.I).

    Google Scholar 

  3. Vasudevan, N., & Ravindran, A. D. (2007). Current Science, 93, 1492–1494.

    CAS  Google Scholar 

  4. Mata-Alvarez, J. (2002). Biomethanization of the organic fraction of municipal solid wastes. London: IWA.

    Google Scholar 

  5. Suthar, S. (2006). Bioresource Technology, 97, 2474–2477.

    CAS  Google Scholar 

  6. Garg, P., Gupta, A., & Satya, S. (2005). Bioresource Technology, 97, 391–395.

    Article  CAS  Google Scholar 

  7. Gupta, R., & Garg, V. K. (2007). Journal of Hazardous Materials. DOI 10.1016/j.jhazmat.2007.09.055.

  8. Marsh, L., Subler, S., Mishra, S., & Marini, M. (2004). Bioresource Technology, 96, 413–418.

    Article  CAS  Google Scholar 

  9. Kaushik, P., & Garg, V. K. (2004). Bioresource Technology, 94, 203–209.

    Article  CAS  Google Scholar 

  10. Kaviraj, & Sharma, S. (2003). Bioresource Technology, 90, 169–173.

    Article  CAS  Google Scholar 

  11. Banu, J. R., Esakkiraj, S., Nagendran, R., & Logakanthi, S. (2005). Journal of Environmental Biology, 26(1), 43–47.

    Google Scholar 

  12. Vigueros, L. C., & Ramírez Camperos, E. (2002). Water Science Technology, 46(10), 153–158.

    Google Scholar 

  13. Arancon, N. Q., Edwards, C. A., Babenko, A., Cannon, J., Galvis, P., & Metzger, J. D. (2008). Applied Soil Ecology, 39, 91–99.

    Article  Google Scholar 

  14. Gajalakshmi, S., & Abbasi, S. A. (2003). Bioresource Technology, 2, 613–615.

    Google Scholar 

  15. Ndegwa, P. M., & Thompson, S. A. (2001). Bioresource Technology, 76, 107–112.

    Article  CAS  Google Scholar 

  16. Zerdani, I., Faid, M., & Malki, A. (2004). International Journal of Agriculture & Biology, 65, 758–761.

    Google Scholar 

  17. Annapurna Raju, A., Rose, C., & Muralidhara Rao, N. (1997). Animal Feed Science and Technology, 66, 139–147.

    Article  Google Scholar 

  18. American Public Health Association, American Water Works Association, Water Pollution Control Federation (1989). Standard methods for the examination of water and wastewater (17th ed.). Washington, DC: APHA.

    Google Scholar 

  19. McKeague, J. A. (1981). Manual on soil sampling and methods of analysis (2nd ed.). Ottawa: Canadian Society of Soil Science.

    Google Scholar 

  20. Walkey, A., & Black, C. A. (1934). Soil Science, 37, 29–38.

    Article  Google Scholar 

  21. Bremner, J. M. (1996). Nitrogen—total. In D. L. Sparks (Ed.), Methods of soil analysis. Part 3—chemical methods (pp. 1085–1121). Madison: Soil Science Society of America and American Society of Agronomy.

    Google Scholar 

  22. Kaushik, P., & Garg, V. K. (2003). Bioresource Technology, 90, 311–316.

    Article  CAS  Google Scholar 

  23. Mathur, S. P., Owen, G., Dinel, H., & Schnitzer, M. (1993). Biological Agriculture and Horticulture, 10, 65–85.

    Google Scholar 

  24. Ndegwa, P. M., Thompson, S. A., & Das, K. C. (2000). Bioresource Technology, 71, 5–12.

    Article  CAS  Google Scholar 

  25. Wong, J. M. C., Fang, M., Li, G. X., & Wong, M. H. (1997). Environmental Technology, 18, 563–568.

    Article  CAS  Google Scholar 

  26. Suthar, S., & Sushma, S. (2008). Science of the Total Environment. DOI 10.1016/j.scitotenv.2008.02.005.

  27. Tripathi, G., & Bhardwaj, P. (2004). Bioresource Technology, 92, 275–283.

    Article  CAS  Google Scholar 

  28. Garg, V. K., Kaushik, P., & Neeraj, D. (2006). Ecotoxicology and Environmental Safety, 65, 412–419.

    Article  CAS  Google Scholar 

  29. Bernal, M. P., Navarro, A. F., Roig, A., Cegarra, J., & Garcia, D. (1996). Biology and Fertility of Soils, 22, 141–148.

    Article  Google Scholar 

  30. Contreras-Ramos, S. M., Alvarez-Bernal, D., Trujillo-Tapia, N., & Dendooven, L. (2004). Bioresource Technology, 94, 223–228.

    Article  CAS  Google Scholar 

  31. Biswarup, S., & Chandra, T. S. (2007). Bioresource Technology, 98, 1680–1683.

    Article  CAS  Google Scholar 

  32. Grube, M., Lin, J. G., Lee, P. H., & Kokorevicha, S. (2006). Geoderma, 130, 324–333.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Sekaran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ravindran, B., Dinesh, S.L., Kennedy, L.J. et al. Vermicomposting of Solid Waste Generated from Leather Industries Using Epigeic Earthworm Eisenia foetida . Appl Biochem Biotechnol 151, 480–488 (2008). https://doi.org/10.1007/s12010-008-8222-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8222-3

Keywords

Navigation