Skip to main content

Advertisement

Log in

A Review on Role of Nanomaterials in Bioconversion of Sustainable Fuel Bioethanol

  • Review
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The growing consumption of fossil fuels like coal, petroleum, and diesel releases greenhouse gases that ultimately deteriorate the air quality. Moreover, fossil fuels pose serious threats like global warming, ocean acidification, unusual climate change and ecosystem fluctuation to the environment and human health. Biofuel is a feasible and sustainable alternative to overcome the limitations of fossil fuels. Among all the biofuels, bioethanol is currently in trend. The industrial-scale bioethanol production is a time-consuming process due to the non-availability of potential techniques and instrumentation. The pretreatment of rigid and recalcitrant lignocellulosic biomass to release fermentable sugars is crucial in the bioethanol production process. Conventionally it was done through physical, chemical and biological methods that demand high energy input, temperature, pressure, efficient organisms, expensive chemicals and solvents to loosen the compact structure of the raw materials. All these methods are sophisticated and expensive which results in the formation of harmful and inhibitory compounds and may also cause equipment corrosion. In this context, the introduction of nanotechnology in bioethanol production has shown improvement on a large scale. The small size, sturdiness and high surface to volume ratio of nanoparticles make them suitable for application in bioethanol production. Thus, the current review provides an insight into the role of nanotechnology in the various steps of the bioethanol production process. The paper will focus on the application of various nanomaterials and nanobiocatalyst in boosting the conversion of rigid lignocellulosic feedstock into fermentable sugar and facilitating the extent of reaction during fermentation for higher bioethanol yield.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this present article.

Code Availability

Not applicable.

References

  1. Chandel, A.K., Rudravaram, R., Narasu, M.L., Rao, V., Ravindra, P.: Economics and environmental impacts of bioethanol production technologies: an appraisal. Biotechnol. Mol. Biol. Rev. 2, 014–032 (2007)

    Google Scholar 

  2. Schenk, P.M., Thomas-Hall, S.R., Stephens, E., Marx, U.C., Mussgnug, J.H., Posten, C., Kruse, O., Hankamer, B.: Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenerg. Res. 1, 20–43 (2008). https://doi.org/10.1007/s12155-008-9008-8

    Article  Google Scholar 

  3. Balat, M., Balat, H., Öz, C.: Progress in bioethanol processing. Prog. Energ. Combust. 34, 551–573 (2008). https://doi.org/10.1016/j.pecs.2007.11.001

    Article  Google Scholar 

  4. Elahi, A., Rehman, A.: Bioconversion of hemicellulosic materials into ethanol by yeast, Pichia kudriavzevii 2-KLP1, isolated from industrial waste. Rev. Argent. Microbiol. 50, 417–425 (2018). https://doi.org/10.1016/j.ram.2017.07.008

    Article  Google Scholar 

  5. El-Naggar, N.E., Deraz, S., Khalil, A.: Bioethanol production from lignocellulosic feedstocks based on enzymatic hydrolysis: current status and recent developments. Biotechnology 13, 1–21 (2014). https://doi.org/10.3923/biotech.2014.1.21

    Article  Google Scholar 

  6. Afifi, M.M.I., Massoud, O.N., El-Akasher, Y.S.: Bioethanol production by simultaneous saccharification and fermentation using pretreated rice straw. Sciences 5, 769–776 (2015)

    Google Scholar 

  7. Brennan, L., Owende, P.: Biofuels from micro-algae-a review of technologies for production, pro-cessing, and extractions of biofuels and co-products. Renew. Sustain. Energy. Rev. 14, 557–577 (2010). https://doi.org/10.1016/j.rser.2009.10.009

    Article  Google Scholar 

  8. Prasad, S., Singh, A., Jain, N., Joshi, H.C.: Ethanol production from sweet sorghum syrup for utilization as automotive fuel in India. Energy Fuels 21, 2415–2420 (2007)

    Article  Google Scholar 

  9. Prasad, S., Singh, A., Joshi, H.C.: Ethanol as an alternative fuel from agricultural, industrial and urban residues. Resour. Conserv. Recycl. 50, 1–39 (2007)

    Article  Google Scholar 

  10. Singh, A., Pant, D., Korres, N.E., Nizami, A.S., Prasad, S., Murphy, J.D.: Key issues in life cycle assessment of ethanol production from ligno-cellulosic biomass: challenges and perspectives. Bioresour. Technol. 101, 5003–5012 (2010). https://doi.org/10.1016/j.biortech.2009.11.062

    Article  Google Scholar 

  11. Singh, A., Smyth, B.M., Murphy, J.D.: A biofuel strategy for Ireland with an emphasis on production of biomethane and minimization of land-take. Renew. Sustain. Energy. Rev. 14, 277–288 (2010). https://doi.org/10.1016/j.rser.2009.07.004

    Article  Google Scholar 

  12. Rodríguez-Couto, S.: Green nanotechnology for biofuel production. In: Srivastava, N., Srivastava, M., Mishra, P., Upadhyay, S., Ramteke, P., Gupta, V. (eds) Sustainable Approaches for Biofuels Production Technologies. Biofuel and Biorefinery Technologies, vol. 7. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-94797-6_4

  13. Kushwaha, D., Upadhyay, S.N., Mishra, P.K.: Nanotechnology in bioethanol/biobutanol production. In: Srivastava, N., Srivastava, M., Pandey, H., Mishra, P., Ramteke, P., Gupta, V. (eds.) Green Nanotechnology for Biofuel Production. Biofuel Biorefinery Technologies, pp. 115–127. Springer, Cham (2018).

  14. Chakraborty, R., Mukhopadhyay, P.: Green fuel blending: a pollution reduction approach. In: Module in Materials Science and Materials Engineering (2019). https://doi.org/10.1016/B978-0-12-803581-8.11019-7

  15. Rajmani, R.: Biofuels as an alternative energy source for sustainability. Adv. Biotechnol. Microbiol. 14, 555894 (2019). https://doi.org/10.19080/AIBM.2019.14.555894

    Article  Google Scholar 

  16. Bhadana, B., Chauhan, M.: Bioethanol production using Saccharomyces cerevisiae with different perspectives: substrates, growth variables, inhibitor reduction and immobilization. Ferment. Technol. (2016). https://doi.org/10.4172/2167-7972.1000131

    Article  Google Scholar 

  17. Dodo, C.M., Mamphweli, S., Okoh, O.: Bioethanol production from lignocellulosic sugarcane leaves and tops. J. Energy S. Afr. 28, 1–11 (2017). https://doi.org/10.17159/2413-3051/2017/v28i3a2354

    Article  Google Scholar 

  18. Wu, J., Elliston, A., Le Gall, G., Colquhoun, I.J., Collins, S.R., Wood, I.P., Dicks, J., Roberts, I.N., Waldron, K.W.: Optimising conditions for bioethanol production from rice husk and rice straw: effects of pre-treatment on liquor composition and fermentation inhibitors. Biotechnol. Biofuels. 11, 62 (2018). https://doi.org/10.1186/s13068-018-1062-7

    Article  Google Scholar 

  19. Kumar, P., Barrett, D.M., Delwiche, M.J., Stroeve, P.: Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind. Eng. Chem. Res. 48, 3713–3729 (2009). https://doi.org/10.1021/ie801542g

    Article  Google Scholar 

  20. Kumar, A.K., Sharma, S.: Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. Bioresour. Bioprocess. 4, 7 (2017). https://doi.org/10.1186/s40643-017-0137-9

    Article  Google Scholar 

  21. Wang, Y., Xia, Y.: Bottom-up and top-down approaches to the synthesis of monodispersed spherical colloids of low melting-point metals. Nano. Lett. 4, 2047–2050 (2004). https://doi.org/10.1021/nl048689j

    Article  Google Scholar 

  22. Ahmed, M.: Nanomaterial synthesis. In: Ravin Narain (eds.) Polymer Science and Nanotechnology, pp. 361–399. Elsevier (2020). https://doi.org/10.1016/B978-0-12-816806-6.00016-9

  23. Kumar, Y., Yogeshwar, P., Bajpai, S., Jaiswal, P., Yadav, S., Pathak, D.P., Sonker, M., Tiwary, S.K.: Nanomaterials: stimulants for biofuels and renewables, yield and energy optimization. Mater. Adv. 2, 5318–5343 (2021). https://doi.org/10.1039/D1MA00538C

    Article  Google Scholar 

  24. Zhang, X., Yan, S., Tyagi, R.D., Surampalli, R.Y.: Synthesis of nanoparticles by microorganisms and their application in enhancing microbiological reaction rates. Chemosphere 82, 489–494 (2011). https://doi.org/10.1016/j.chemosphere.2010.10.023

    Article  Google Scholar 

  25. Ealia, S.A.M., Saravanakumar, M.P.: A review on the classification, characterisation, synthesis of nanoparticles and their application. IOP Conf. Ser. 263, 032019 (2017). https://doi.org/10.1088/1757-899X/263/3/032019

    Article  Google Scholar 

  26. Eroglu, E., Eggers, P.K., Winslade, M., Smith, S.M., Raston, C.L.: Enhanced accumulation of microalgal pigments using metal nanoparticle solutions as light filtering devices. Green. Chem. 15, 3155–3159 (2013). https://doi.org/10.1039/c3gc41291a

    Article  Google Scholar 

  27. Contreras, J.E., Rodriguez, E., Taha-Tijerina, J.: Nanotechnology applications for electrical transformers—a review. Electr. Pow. Syst. Res. 143, 573–584 (2017). https://doi.org/10.1016/j.epsr.2016.10.058

    Article  Google Scholar 

  28. Sekoai, P.T., Ouma, C.N.M., Du Preez, S.P., Modisha, P., Engelbrecht, N., Bessarabov, D.G., Ghimire, A.: Application of nanoparticles in biofuels: an overview. Fuel 237, 380–397 (2019). https://doi.org/10.1016/j.fuel.2018.10.030

    Article  Google Scholar 

  29. Arenas-Cárdenas, P., López-López, A., Moeller-Chávez, G.E., León-Becerril, E.: Current pretreatments of lignocellulosic residues in the production of bioethanol. Waste. Biomass. Valoriz. 8, 161–181 (2017). https://doi.org/10.1007/s12649-016-9559-4

    Article  Google Scholar 

  30. Beliya, E., Tiwari, S., Jadhav, S.K., Tiwari, K.L.: De-oiled rice bran as a source of bioethanol. Energy. Explor. Exploit. 31, 771–782 (2013). https://doi.org/10.1260/0144-5987.31.5.771

    Article  Google Scholar 

  31. Takano, M., Hoshino, K.: Bioethanol production from rice straw by simultaneous Saccharification and fermentation with statistical optimized cellulase cocktail and fermenting fungus. Bioresour. Bioprocess. 5, 16 (2018). https://doi.org/10.1186/s40643-018-0203-y

    Article  Google Scholar 

  32. Tiwari, S., Beliya, E., Vaswani, M., Khawase, K., Verma, D., Gupta, N., Paul, J.S., Jadhav, S.K.: Rice husk: a potent Lignocellulosic biomass for second generation bioethanol production from Klebsiella oxytoca ATCC 13182. Waste. Biomass. Valoriz. 17, 1–9 (2022). https://doi.org/10.1007/s12649-022-01681-5

    Article  Google Scholar 

  33. Dhandayuthapani, K., Kumar, P.S., Chia, W.Y., Chew, K.W., Karthik, V., Selvarangaraj, H., Selvakumar, P., Sivashanmugam, P., Show, P.L.: Bioethanol from hydrolysate of ultrasonic processed robust microalgal biomass cultivated in dairy wastewater under optimal strategy. Energy 244, 22604 (2022). https://doi.org/10.1016/j.energy.2021.122604

    Article  Google Scholar 

  34. Arya, I., Poona, A., Dikshit, P.K., Pandit, S., Kumar, J., Singh, H.N., Jha, N.K., Rudayni, H.A., Chaudhary, A.A., Kumar, S.: Current trends and future prospects of nanotechnology in biofuel production. Catalysts 11, 1308 (2021). https://doi.org/10.3390/catal11111308

    Article  Google Scholar 

  35. Huang, J., Yu, C.: Determination of cellulose, hemicellulose and lignin content using near-infrared spectroscopy in flax fibre. Text. Res. J. 89, 4875–4883 (2019). https://doi.org/10.1177/0040517519843464

    Article  Google Scholar 

  36. Jönsson, L.J., Martín, C.: Pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects. Bioresour. Technol. 199, 103–112 (2016). https://doi.org/10.1016/j.biortech.2015.10.009

    Article  Google Scholar 

  37. Sharma, H.K., Xu, C., Qin, W.: Biological pretreatment of lignocellulosic biomass for biofuels and bioproducts: an overview. Waste Biomass Valoriz. 10, 235–251 (2019). https://doi.org/10.1007/s12649-017-0059-y

    Article  Google Scholar 

  38. Zoghlami, A., Paës, G.: Lignocellulosic biomass: understanding recalcitrance and predicting hydrolysis. Front. Chem. (2019). https://doi.org/10.3389/fchem.2019.00874

    Article  Google Scholar 

  39. Fadeyi, A.E., Akiode, S.O., Emmanuel, S.A., Falayi, O.E.: Compositional analysis and characterization of lignocellulosic biomass from selected agricultural wastes. J. Sci. Math. Lett. 8, 48–56 (2020). https://doi.org/10.37134/jsml.vol8.1.6.2020

    Article  Google Scholar 

  40. Garlapati, V.K., Chandel, A.K., Kumar, S.J., Sharma, S., Sevda, S., Ingle, A.P., Pant, D.: Circular economy aspects of lignin: towards a lignocellulose biorefinery. Renew. Sustain Energy Rev. 130, 109977 (2020). https://doi.org/10.1016/j.rser.2020.109977

    Article  Google Scholar 

  41. Sankaran, R., Markandan, K., Khoo, K.S., Cheng, C., Leroy, E., Show, P.L.: The expansion of lignocellulose biomass conversion into bioenergy via nanobiotechnology. Front. Nanotechnol. 3, 793528 (2021). https://doi.org/10.3389/fnano.2021.793528

    Article  Google Scholar 

  42. Palaniappan, K.: An overview of applications of nanotechnology in biofuel production. World. Appl. Sci. J. 35, 1305–1311 (2017). https://doi.org/10.5829/idosi.wasj.2017.1305.1311

    Article  Google Scholar 

  43. Osazuwa, C., Akinyosoye, F.: Comparative studies on production of bioethanol from rice straw using Bacillus subtilis and Trichoderma viride as hydrolyzing agents. Microbiol. Res. J. Int. 28, 1–2 (2019). https://doi.org/10.9734/MRJI/2019/v28i330134

    Article  Google Scholar 

  44. Kádár, Z., Schultz-Jensen, N., Jensen, J.S., Hansen, M.A., Leipold, F., Bjerre, A.B.: Enhanced ethanol production by removal of cutin and epicuticular waxes of wheat straw by plasma assisted pretreatment. Biomass. Bioenergy 81, 26–30 (2015). https://doi.org/10.1016/j.biombioe.2015.05.012

    Article  Google Scholar 

  45. Trevorah, R.M., Othman, M.Z.: Alkali pretreatment and enzymatic hydrolysis of Australian timber mill sawdust for biofuel production. J. Renew. Energy. 284250, 1–9 (2015). https://doi.org/10.1155/2015/284250

    Article  Google Scholar 

  46. Amores, I., Ballesteros, I., Manzanares, P., Sáez, F., Michelena, G., Ballesteros, M.: Ethanol production from sugarcane bagasse pretreated by steam explosion. Electron. J. Energy Environ. 1, 25–36 (2013). https://doi.org/10.7770/ejee-V1N1-art519

    Article  Google Scholar 

  47. Alizadeh, H., Teymouri, F., Gilbert, T.I., Dale, B.E.: Pretreatment of switchgrass by ammonia fiber explosion (AFEX). Appl. Biochem. Biotechnol. 124, 1133–1141 (2005). https://doi.org/10.1385/ABAB:124:1-3:1133

    Article  Google Scholar 

  48. Wi, S.G., Choi, I.S., Kim, K.H., Kim, H.M., Bae, H.J.: Bioethanol production from rice straw by popping pretreatment. Biotechnol. Biofuels. 6, 166 (2013). https://doi.org/10.1186/1754-6834-6-166

    Article  Google Scholar 

  49. Pooja, N.S., Sajeev, M.S., Jeeva, M.L., Padmaja, G.: Bioethanol production from microwave-assisted acid or alkali-pretreated agricultural residues of cassava using separate hydrolysis and fermentation (SHF). 3 Biotech 8, 69 (2018). https://doi.org/10.1007/s13205-018-1095-4

    Article  Google Scholar 

  50. Vincent, M., Pometto, A.L., III., van Leeuwen, J.H.: Ethanol production via simultaneous saccharification and fermentation of sodium hydroxide treated corn stover using Phanerochaete chrysosporium and Gloeophyllum trabeum. Bioresour. Technol. 158, 1–6 (2014). https://doi.org/10.1016/j.biortech.2014.01.083

    Article  Google Scholar 

  51. Ajeet Kumar, S., Pushpa, A.: Saccarification by fungi and ethanol production by bacteria using Lignocellulosic materials. Int. Res. J. Pharm. 3, 411–414 (2012)

    Google Scholar 

  52. Nazarpour, F., Abdullah, D.K., Abdullah, N., Motedayen, N., Zamiri, R.: Biological pretreatment of rubberwood with Ceriporiopsis subvermispora for enzymatic hydrolysis and bioethanol production. BioMed. Res. Int. 268349, 1–9 (2013). https://doi.org/10.1155/2013/268349

    Article  Google Scholar 

  53. Baig, N., Kammakakam, I., Falath, W.: Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges. Mater. Adv. 2, 1821–1871 (2021). https://doi.org/10.1039/D0MA00807A

    Article  Google Scholar 

  54. Abid, N., Khan, A.M., Shujait, S., Chaudhary, K., Ikram, M., Imran, M., Haider, J., Khan, M., Khan, Q., Maqbool, M.: Synthesis of nanomaterials using various top-down and bottom-up approaches, influencing factors, advantages, and disadvantages: a review. Adv. Colloid Interface Sci. (2021). https://doi.org/10.1016/j.cis.2021.102597

    Article  Google Scholar 

  55. Yadav, T.P., Yadav, R.M., Singh, D.P.: Mechanical milling: a top-down approach for the synthesis of nanomaterials and nanocomposites. Nanosci. Nanotechnol. 2, 22–48 (2012). https://doi.org/10.5923/j.nn.20120203.01

    Article  Google Scholar 

  56. Sportelli, M.C., Izzi, M., Volpe, A., Clemente, M., Picca, R.A., Ancona, A., Lugarà, P.M., Palazzo, G., Cioffi, N.: The pros and cons of the use of laser ablation synthesis for the production of silver nano-antimicrobials. Antibiotics 7, 67 (2018). https://doi.org/10.3390/antibiotics7030067

    Article  Google Scholar 

  57. Ayyub, P., Chandra, R., Taneja, P., Sharma, A.K., Pinto, R.: Synthesis of nanocrystalline material by sputtering and laser ablation at low temperatures. Appl. Phys. A 73, 67–73 (2001). https://doi.org/10.1007/s003390100833

    Article  Google Scholar 

  58. Wender, H., Migowski, P., Feil, A.F., Teixeira, S.R., Dupont, J.: Sputtering deposition of nanoparticles onto liquid substrates: recent advances and future trends. Coord. Chem. Rev. 257, 2468–2483 (2013). https://doi.org/10.1016/j.ccr.2013.01.013

    Article  Google Scholar 

  59. Bhaviripudi, S., Mile, E., Steiner, S.A., Zare, A.T., Dresselhaus, M.S., Belcher, A.M., Kong, J.: CVD synthesis of single-walled carbon nanotubes from gold nanoparticle catalysts. J. Am. Chem. Soc. 129, 1516–1517 (2007). https://doi.org/10.1021/ja0673332

    Article  Google Scholar 

  60. Rane, A.V., Kanny, K., Abitha, V.K., Thomas, S.: Methods for synthesis of nanoparticles and fabrication of nanocomposites. In: Bhagyaraj, S.M., Oluwafemi, O.S., Kalarikkal, N., Thomas, S. (eds.) In. Syn. Inorg. Nanomater., pp. 121–139. Woodhead Publishing (2018). https://doi.org/10.1016/C2016-0-01718-7.

  61. Khond, V.W., Kriplani, V.M.: Effect of nanofluid additives on performances and emissions of emulsified diesel and biodiesel fueled stationary CI engine: a comprehensive review. Renew. Sustain. Energy Rev. 59, 1338–1348 (2016). https://doi.org/10.1016/j.rser.2016.01.051

    Article  Google Scholar 

  62. Kaur, P., Taggar, M.S., Kalia, A.: Characterization of magnetic nanoparticle–immobilized cellulases for enzymatic saccharification of rice straw. Biomass Convers. Bioref. 11, 955–969 (2020). https://doi.org/10.1007/s13399-020-00628-x

    Article  Google Scholar 

  63. Rai, M., dos Santos, J.C., Soler, M.F., Marcelino, P.R., Brumano, L.P., Ingle, A.P., Gaikwad, S., Gade, A., da Silva, S.S.: Strategic role of nanotechnology for production of bioethanol and biodiesel. Nanotechnol. Rev. 5, 231–250 (2016). https://doi.org/10.1515/ntrev-2015-0069

    Article  Google Scholar 

  64. Wu, Q., Xie, X., Wang, Y., Roskilly, T.: Effect of carbon coated aluminum nanoparticles as additive to biodiesel-diesel blends on performance and emission characteristics of diesel engine. Appl. Energy 221, 597–604 (2018). https://doi.org/10.1016/j.apenergy.2018.03.157

    Article  Google Scholar 

  65. Harmer, M.A., Junk, C., Rostovtsev, V., Carcani, L.G., Vickery, J., Schnepp, Z.: Synthesis and applications of superacids 1, 1, 2, 2-tetrafluoroethanesulfonic acid, supported on silica. Green. Chem. 9, 30–37 (2007). https://doi.org/10.1039/b607428f

    Article  Google Scholar 

  66. Pena, L., Xu, F., Hohn, K.L., Li, J., Wang, D.: Propyl-sulfonic acid functionalized nanoparticles as catalyst for pretreatment of corn stover. J. Biomater. Nanobiotechnol. 5, 8–16 (2014). https://doi.org/10.4236/jbnb.2014.51002

    Article  Google Scholar 

  67. Mosier, N.S., Ladisch, C.M., Ladisch, M.R.: Characterization of acid catalytic domains for cellulose hydrolysis and glucose degradation. Biotechnol. Bioeng. 79, 610–618 (2002). https://doi.org/10.1002/bit.10316

    Article  Google Scholar 

  68. Peña, L., Ikenberry, M., Ware, B., Hohn, K.L., Boyle, D., Sun, X.S., Wang, D.: Cellobiose hydrolysis using acid-functionalized nanoparticles. Biotechnol. Bioprocess. Eng. 16, 1214–1222 (2011). https://doi.org/10.1007/s12257-011-0166-8

    Article  Google Scholar 

  69. Pena, L., Ikenberry, M., Hohn, K.L., Wang, D.: Acid-functionalized nanoparticles for pretreatment of wheat straw. J. Biomater. Nanobiotechnol. 3, 342–352 (2012). https://doi.org/10.4236/jbnb.2012.33032

    Article  Google Scholar 

  70. Gong, K., Chafin, S., Pennybaker, K., Fahey, D., Subramaniam, B.: Economic and environmental impact analyses of solid acid catalyzed isoparaffin/olefin alkylation in supercritical carbon dioxide. Ind. Eng. Chem. Res. 47, 9072–9080 (2008). https://doi.org/10.1021/ie800399s

    Article  Google Scholar 

  71. Onda, A., Ochi, T., Yanagisawa, K.: Selective hydrolysis of cellulose into glucose over solid acid catalysts. Green. Chem 10, 1033–1037 (2008). https://doi.org/10.1039/b808471h

    Article  Google Scholar 

  72. Shimizu, F.L., Monteiro, P.Q., Ghiraldi, P.H.C., Melati, R.B., Pagnocca, F.C., de Souza, W., Anna, C.S., Brienzo, M.: Acid, alkali and peroxide pretreatments increase the cellulose accessibility and glucose yield of banana pseudostem. Ind. Crops. Prod. 115, 62–68 (2018). https://doi.org/10.1016/j.indcrop.2018.02.024

    Article  Google Scholar 

  73. Lai, D.M., Deng, L., Guo, Q.X., Fu, Y.: Hydrolysis of biomass by magnetic solid acid. Energy. Environ. Sci. 4, 3552–3557 (2011). https://doi.org/10.1039/C1EE01526E

    Article  Google Scholar 

  74. Wang, H., Covarrubias, J., Prock, H., Wu, X., Wang, D., Bossmann, S.H.: Acid-functionalized magnetic nanoparticle as heterogeneous catalysts for biodiesel synthesis. J. Phys. Chem. 119, 26020–26028 (2015). https://doi.org/10.1021/acs.jpcc.5b08743

    Article  Google Scholar 

  75. Wang, W., Ji, S., Lee, I.: Fast and efficient nanoshear hybrid alkaline pretreatment of corn stover for biofuel and materials production. Biomass. Bioenerg. 51, 35–42 (2013). https://doi.org/10.1016/j.biombioe.2012.12.037

    Article  Google Scholar 

  76. Ji, S., Lee, I.: Impact of cationic polyelectrolyte on the nanoshear hybrid alkaline pretreatment of corn stover: morphology and saccharification study. Bioresour. Technol. 133, 45–50 (2013). https://doi.org/10.1016/j.biortech.2013.01.128

    Article  Google Scholar 

  77. Ingle, A.P., Chandel, A.K., Antunes, F.A., Rai, M., da Silva, S.S.: New trends in application of nanotechnology for the pretreatment of lignocellulosic biomass. Biofpr 13, 776–788 (2019). https://doi.org/10.1002/bbb.1965

    Article  Google Scholar 

  78. Iranmahboob, J., Nadim, F., Monemi, S.: Optimizing acid-hydrolysis: a critical step for production of ethanol from mixed wood chips. Biomass Bioenerg. 22, 401–404 (2002). https://doi.org/10.1016/S0961-9534(02)00016-8

    Article  Google Scholar 

  79. Sakai, S., Tsuchida, Y., Okino, S., Ichihashi, O., Kawaguchi, H., Watanabe, T., Inui, M., Yukawa, H.: Effect of lignocellulose-derived inhibitors on growth of and ethanol production by growth-arrested Corynebacterium glutamicum R. Appl. Environ. Microbiol. 73, 2349–2353 (2007). https://doi.org/10.1128/AEM.02880-06

    Article  Google Scholar 

  80. Singhvi, M., Kim, B.S.: Current developments in lignocellulosic biomass conversion into biofuels using nanobiotechology approach. Energies 13, 5300 (2020). https://doi.org/10.3390/en13205300

    Article  Google Scholar 

  81. Rai, M., Ingle, A.P., Pandit, R., Paralikar, P., Biswas, J.K., da Silva, S.S.: Emerging role of nanobiocatalysts in hydrolysis of lignocellulosic biomass leading to sustainable bioethanol production. Catal. Rev. Sci. Eng. 61, 1–26 (2019). https://doi.org/10.1080/01614940.2018.1479503

    Article  Google Scholar 

  82. Vaghari, H., Jafarizadeh-Malmiri, H., Mohammadlou, M., Berenjian, A., Anarjan, N., Jafari, N., Nasiri, S.: Application of magnetic nanoparticles in smart enzyme immobilization. Biotechnol. Lett. 38, 223–233 (2016). https://doi.org/10.1007/s10529-015-1977-z

    Article  Google Scholar 

  83. Yallappa, S., Manjanna, J., Sindhe, M.A., Satyanarayan, N.D., Pramod, S.N., Nagaraja, K.: Microwave assisted rapid synthesis and biological evaluation of stable copper nanoparticles using T. arjuna bark extract. Spectrochim. Acta A 110, 108–115 (2013). https://doi.org/10.1016/j.saa.2013.03.005

    Article  Google Scholar 

  84. Rosenau, T., Potthast, A., Sixta, H., Kosma, P.: The chemistry of side reactions and byproduct formation in the system NMMO/cellulose (Lyocell process). Prog. Polym. Sci. 26, 1763–1837 (2001). https://doi.org/10.1016/S0079-6700(01)00023-5

    Article  Google Scholar 

  85. Srivastava, N., Singh, J., Ramteke, P.W., Mishra, P.K., Srivastava, M.: Improved production of reducing sugars from rice straw using crude cellulase activated with Fe3O4/Alginate nanocomposite. Bioresour. Technol. 183, 262–266 (2015). https://doi.org/10.1016/j.biortech.2015.02.059

    Article  Google Scholar 

  86. Baskar, G., Kumar, R.N., Melvin, X.H., Aiswarya, R., Soumya, S.: Sesbania aculeate biomass hydrolysis using magnetic nanobiocomposite of cellulase for bioethanol production. Renew. Energy 98, 23–28 (2016). https://doi.org/10.1016/j.renene.2016.04.035

    Article  Google Scholar 

  87. Zdarta, J., Meyer, A.S., Jesionowski, T., Pinelo, M.A.: General overview of support materials for enzyme immobilization: characteristics, properties, practical utility. Catalysts 8, 92 (2018). https://doi.org/10.3390/catal8020092

    Article  Google Scholar 

  88. Rebroš, M., Rosenberg, M., Stloukal, R., Krištofíková, L.: High efficiency ethanol fermentation by entrapment of Zymomonas mobilis into LentiKats. Lett. Appl. Microbiol. 41, 412–416 (2005). https://doi.org/10.1111/j.1472-765X.2005.01770.x

    Article  Google Scholar 

  89. Dolejš, I., Krasňan, V., Stloukal, R., Rosenberg, M., Rebroš, M.: Butanol production by immobilised Clostridium acetobutylicum in repeated batch, fed-batch, and continuous modes of fermentation. Bioresour. Technol. 169, 723–730 (2014). https://doi.org/10.1016/j.biortech.2014.07.039

    Article  Google Scholar 

  90. Gajula, C., Chandel, A.K., Konakalla, R., Rudravaram, R., Pogaku, R., Mangamoori, L.N.: Fermentation of groundnut shell enzymatic hydrolysate for fuel ethanol production by free and sorghum stalks immobilized cells of Pichia stipitis NCIM 3498. Int. J. Chem. React. Eng. (2011). https://doi.org/10.1515/1542-6580.2514

    Article  Google Scholar 

  91. Le, H.D., Thanonkeo, P., Le, V.V.M.: Impact of high temperature on ethanol fermentation by Kluyveromyces marxianus immobilized on banana leaf sheath pieces. Appl. Biochem. Biotechnol. 171, 806–816 (2013). https://doi.org/10.1007/s12010-013-0411-z

    Article  Google Scholar 

  92. Liu, J., Chen, S., Ding, J., Xiao, Y., Han, H., Zhong, G.: Sugarcane bagasse as support for immobilization of Bacillus pumilus HZ-2 and its use in bioremediation of mesotrione-contaminated soils. Appl. Microbiol. Biotechnol. 99, 10839–10851 (2015). https://doi.org/10.1007/s00253-015-6935-0

    Article  Google Scholar 

  93. Zhang, Y., Ma, Y., Yang, F., Zhang, C.: Continuous acetone–butanol–ethanol production by corn stalk immobilized cells. J. Ind. Microbiol. Biotechnol. 36, 1117–1121 (2009). https://doi.org/10.1007/s10295-009-0582-3

    Article  Google Scholar 

  94. Survase, S.A., van Heiningen, A., Granström, T.: Continuous bio-catalytic conversion of sugar mixture to acetone–butanol–ethanol by immobilized Clostridium acetobutylicum DSM 792. Appl. Microbiol. Biotechnol. 93, 2309–2316 (2012). https://doi.org/10.1007/s00253-011-3761-x

    Article  Google Scholar 

  95. Riansa-ngawong, W., Suwansaard, M., Prasertsan, P.: Application of palm pressed fiber as a carrier for ethanol production by Candida shehatae TISTR5843. Electron J. Biotechnol. 15, 1 (2012). https://doi.org/10.2225/vol15-issue6-fulltext-1

    Article  Google Scholar 

  96. Rakin, M., Mojovic, L., Nikolic, S., Vukasinovic, M., Nedovic, V.: Bioethanol production by immobilized Sacharomyces cerevisiae var. ellipsoideus cells. Afr. J. Biotechnol. 8, 464–471 (2009)

    Google Scholar 

  97. Borovikova, D., Scherbaka, R., Patmalnieks, A., Rapoport, A.: Effects of yeast immobilization on bioethanol production. Biotechnol. Appl. Biochem. 61, 33–39 (2014). https://doi.org/10.1002/bab.1158

    Article  Google Scholar 

  98. DiCosimo, R., McAuliffe, J., Poulose, A.J., Bohlmann, G.: Industrial use of immobilized enzymes. Chem. Soc. Rev. 42, 6437–6474 (2013). https://doi.org/10.1016/j.mcat.2019.110607

    Article  Google Scholar 

  99. Huang, P.J., Chang, K.L., Hsieh, J.F., Chen, S.T.: Catalysis of rice straw hydrolysis by the combination of immobilized cellulase from Aspergillus niger on β-cyclodextrin-Fe3O4 nanoparticles and ionic liquid. BioMed. Res. Int. 2015, 409 (2015). https://doi.org/10.1155/2015/409103

    Article  Google Scholar 

  100. Sankar, M.K., Ravikumar, R., Kumar, M.N., Sivakumar, U.: Development of co-immobilized tri-enzyme biocatalytic system for one-pot pretreatment of four different perennial lignocellulosic biomass and evaluation of their bioethanol production potential. Bioresour. Technol. 269, 227–236 (2018). https://doi.org/10.1016/j.biortech.2018.08.091

    Article  Google Scholar 

  101. Cherian, E., Dharmendira Kumar, M., Baskar, G.: Immobilization of cellulase onto MnO2 nanoparticles for bioethanol production by enhanced hydrolysis of agricultural waste. Chin. J. Catal. 36, 1223–1229 (2015). https://doi.org/10.1016/S1872-2067(15)60906-8

    Article  Google Scholar 

  102. Verma, M.L., Kumar, S., Das, A., Randhawa, J.S., Chamundeeswari, M.: Chitin and chitosan-based support materials for enzyme immobilization and biotechnological applications. Environ. Chem. Lett. 18, 315–323 (2020). https://doi.org/10.1007/s10311-019-00942-5

    Article  Google Scholar 

  103. Abraham, R.E., Verma, M.L., Barrow, C.J., Puri, M.: Suitability of magnetic nanoparticle immobilised cellulases in enhancing enzymatic saccharification of pretreated hemp biomass. Biotechnol. Biofuels 7, 1–12 (2014). https://doi.org/10.1186/1754-6834-7-90

    Article  Google Scholar 

  104. Chaturvedi, S., Dave, P.N., Shah, N.K.: Applications of nano-catalyst in new era. J. Saudi Chem. Soc. 16, 307–325 (2012). https://doi.org/10.1016/j.jscs.2011.01.015

    Article  Google Scholar 

  105. Pan, X., Fan, Z., Chen, W., Ding, Y., Luo, H., Bao, X.: Enhanced ethanol production inside carbon-nanotube reactors containing catalytic particles. Nat. Mater. 7, 507–511 (2007). https://doi.org/10.1038/nmat1916

    Article  Google Scholar 

  106. Qin, L., Zhao, X., Li, W.C., Zhu, J.Q., Liu, L., Li, B.Z., Yuan, Y.J.: Process analysis and optimization of simultaneous saccharification and co-fermentation of ethylenediamine-pretreated corn stover for ethanol production. Biotechnol. Biofuels 11, 1–10 (2018). https://doi.org/10.1186/s13068-018-1118-8

    Article  Google Scholar 

  107. Dahnum, D., Tasum, S.O., Triwahyuni, E., Nurdin, M., Abimanyu, H.: Comparison of SHF and SSF processes using enzyme and dry yeast for optimization of bioethanol production from empty fruit bunch. Energy Procedia. 68, 107–116 (2015). https://doi.org/10.1016/j.egypro.2015.03.23

    Article  Google Scholar 

  108. Saha, B.C., Cotta, M.A.: Enzymatic saccharification and fermentation of alkaline peroxide pretreated rice hulls to ethanol. Enzyme. Microb. Technol. 41, 528–532 (2007). https://doi.org/10.1016/j.enzmictec.2007.04.006

    Article  Google Scholar 

  109. Chandel, A.K., Singh, O.V., Narasu, M.L., Rao, L.V.: Bioconversion of Saccharum spontaneum (wild sugarcane) hemicellulosic hydrolysate into ethanol by mono and co-cultures of Pichia stipitis NCIM3498 and thermotolerant Saccharomyces cerevisiae-VS3. New. Biotechnol. 28, 593–599 (2011). https://doi.org/10.1016/j.nbt.2010.12.002

    Article  Google Scholar 

  110. Ban, D.K., Paul, S.: Zinc oxide nanoparticles modulates the production of β-glucosidase and protects its functional state under alcoholic condition in Saccharomyces cerevisiae. Appl. Biochem. Biotechnol. 173, 155–166 (2014). https://doi.org/10.1007/s12010-014-0825-2

    Article  Google Scholar 

  111. Sanusi, I.A., Suinyuy, T.N., Lateef, A., Kana, G.E.: Effect of nickel oxide nanoparticles on bioethanol production: process optimization, kinetic and metabolic studies. Process Biochem. 92, 386–400 (2020). https://doi.org/10.1016/j.procbio.2020.01.029

    Article  Google Scholar 

  112. Sirajunnisa, A.R., Surendhiran, D.: Nanosilver fabrication mediated by exopolysaccharides from Pseudomonas fluorescens and its biological activities. Am. J. Pharm. Tech. Res. 5, 728–742 (2014)

    Google Scholar 

  113. Akbarzadeh, A., Samiei, M., Davaran, S.: Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine. Nanoscale Res. Lett. 7, 1–3 (2012). https://doi.org/10.1186/1556-276X-7-144

    Article  Google Scholar 

  114. Gupta, K., Chundawat, T.S.: Zinc oxide nanoparticles synthesized using Fusarium oxysporum to enhance bioethanol production from rice-straw. Biomass. Bioenerg. 143, 105840 (2020). https://doi.org/10.1016/j.biombioe.2020.105840

    Article  Google Scholar 

  115. Kim, Y.K., Lee, H.: Use of magnetic nanoparticles to enhance bioethanol production in syngas fermentation. Bioresour. Technol. 204, 139–144 (2016). https://doi.org/10.1016/j.biortech.2016.01.001

    Article  Google Scholar 

  116. Kim, Y.K., Park, S.E., Lee, H., Yun, J.Y.: Enhancement of bioethanol production in syngas fermentation with Clostridium ljungdahlii using nanoparticles. Bioresour. Technol. 159, 446–450 (2014). https://doi.org/10.1016/j.biortech.2014.03.046

    Article  Google Scholar 

  117. Ivanova, V., Petrova, P., Hristov, J.: Application in the ethanol fermentation of immobilized yeast cells in matrix of alginate/magnetic nanoparticles, on chitosan-magnetite microparticles and cellulose-coated magnetic nanoparticles. Int. Rev. Chem. Eng. 3, 289–299 (2011)

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge DST-FIST for financial support to School of studies in Biotechnology Pt. Ravishankar Shukla University Raipur, Chhattisgarh Raipur, Chhattisgarh (Sanction No. 2384/IFD/2014–15, dated July 31, 2014).

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Idea for the article: DV and SKJ; Literature search and data analysis: JSP; Editing and drafting: ST and DV; All author read and approved the final version of the manuscript.

Corresponding author

Correspondence to Shubhra Tiwari.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest in any part of the study.

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, D., Paul, J.S., Tiwari, S. et al. A Review on Role of Nanomaterials in Bioconversion of Sustainable Fuel Bioethanol. Waste Biomass Valor 13, 4651–4667 (2022). https://doi.org/10.1007/s12649-022-01843-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-022-01843-5

Keywords

Navigation