Skip to main content
Log in

Impact of High Temperature on Ethanol Fermentation by Kluyveromyces marxianus Immobilized on Banana Leaf Sheath Pieces

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Ethanol fermentation was carried out with Kluyveromyces marxianus cells at various temperatures (30, 35, 40, and 45 °C). Fermentation performance of the immobilized yeast on banana leaf sheath pieces and the free yeast were evaluated and compared. Generally, ethanol production of the immobilized and free yeast was stable in a temperature range of 30–40 °C. Temperature of 45 °C restricted yeast growth and lengthened the fermentation. The immobilized yeast demonstrated faster sugar assimilation and higher ethanol level in the fermentation broth in comparison with the free yeast at all fermentation temperatures. Change in fatty acid level in cellular membrane was determined to clarify the response of the free and immobilized yeast to thermal stress. The free cells of K. marxianus responded to temperature increase by increasing saturated fatty acid (C16:0 and C18:0) level and by decreasing unsaturated fatty acid (C18:1 and C18:2) level in cellular membrane. For fermentation at 40 °C with immobilized cells of K. marxianus, however, the changes were not observed in both saturated fatty acid (C16:0) and unsaturated fatty acid (C18:1 and C18:2) level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Figure 4

Similar content being viewed by others

References

  1. Torija, M. J., Roze′s, N., Poblet, M., Guillamon, J. M., & Mas, A. (2002). International Journal of Microbiology, 80, 47–53.

    Google Scholar 

  2. Eiadpum, A., Limtong, S., & Phisalaphong, M. (2012). Journal of Bioscience and Bioengineering, 114, 325–329.

    Article  CAS  Google Scholar 

  3. Gough, S., & McHale, A. P. (1998). Bioprocess Engineering, 19, 33–36.

    CAS  Google Scholar 

  4. López-Alvarez, A., Díaz-Pérez, A. L., Sosa-Aguirre, C., Macías-Rodríguez, L., & Campos-García, L. (2012). Journal of Bioscience and Bioengineering, 113, 614–618.

    Article  Google Scholar 

  5. Rodrussamee, N., Lertwattanasakul, N., Hirata, K., Suprayogi, Limtong, S., Kosaka, K., & Yamada, M. (2011). Applied Microbiology and Biotechnology, 90, 1573–1586.

    Article  CAS  Google Scholar 

  6. Yu, J., Yue, G., Zhong, J., Zhang, X., & Tan, T. (2010). Renewable Energy, 35, 1130–1134.

    Article  CAS  Google Scholar 

  7. Liang, L., Zhang, Y., Zhang, L., Zhu, M., Liang, S., & Huang, Y. (2008). Journal of Industrial Microbiology and Biotechnology, 35, 1605–1613.

    Article  CAS  Google Scholar 

  8. Sree, N. K., Sridhar, M., Suresh, K., Banat, I. M., & Rao, L. V. (2000). Journal of Industrial Microbiology and Biotechnology, 24, 222–226.

    Article  CAS  Google Scholar 

  9. Pacheco, A. M., Gondim, D. R., & Gonçalves, L. R. B. (2010). Applied Biochemistry and Biotechnology, 161, 209–217.

    Article  CAS  Google Scholar 

  10. Kova′cs, G., Sa′gi, L., Jacon, G., Arinaitwe, G., Busogoro, J.-P., Thiry, E., Strosse, H., Swennen, R., & Remy, S. (2012). Transgenic Research, 22, 117–130.

    Article  Google Scholar 

  11. Meenakshi, P., Noorjahan, S. E., Rajini, R., Venkateswarlu, U., Rose, C., & Sastry, T. P. (2002). Bulletin of Materials Science, 25, 25–29.

    Article  CAS  Google Scholar 

  12. Nada, A. M. A., El-Gendy, A. A., & Mohamed, S. H. (2010). Carbohydrate Polymers, 82, 1025–1030.

    Article  CAS  Google Scholar 

  13. Namasivayam, C., & Kanchana, N. (1992). Chemosphere, 25, 1691–1705.

    Article  CAS  Google Scholar 

  14. Suutari, M., Liukkoneann, K., & Laakso, S. (1990). Journal of General Microbiology, 136, 1469–1474.

    Article  CAS  Google Scholar 

  15. Beltran, G., Novo, M., Guillamón, J. M., Mas, A., & Rozès, N. (2008). International Journal of Microbiology, 121, 169–177.

    Article  CAS  Google Scholar 

  16. Banat, I. M., Nigam, P., Singh, D., Marchant, R., & McHale, A. P. (1998). World Journal of Microbial and Biotechnology, 14, 809–821.

    Article  CAS  Google Scholar 

  17. AOAC. Official methods of analysis, 16th edn (1995) AOAC International, Gaithersburg, MD

  18. Vasconcelos, J. N., Lopes, C. E., & França, F. P. (2004). Brazilian Journal of Chemical Engineering, 21, 357–365.

    Article  Google Scholar 

  19. Miller, G. L. (1959). Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  20. Sinigaglia, M., Gardini, F., & Guerzoni, M. F. (1993). Applied Microbiology and Biotechnology, 39, 593–598.

    Article  CAS  Google Scholar 

  21. Moreno, D. A., Ibarra, D., Fernández, J., & Ballesteros, M. (2012). Bioresource Technology, 106, 101–109.

    Article  CAS  Google Scholar 

  22. Roukas, T. (1994). Applied Biochemistry and Biotechnology, 44, 49–64.

    Article  CAS  Google Scholar 

  23. Torija, M. J., Beltran, G., Novo, M., Poblet, M., Guillamon, J. M., Mas, A., & Rozes, N. (2003). International Journal of Microbiology, 85, 127–136.

    Article  CAS  Google Scholar 

  24. Desimone, M. F., Degrossi, J., D’Aquino, M., & Diaz, L. E. (2002). Biotechnology Letters, 24, 1557–1559.

    Article  CAS  Google Scholar 

  25. Maryse, G., & Dravko, D. (1996). Chemical Engineering Journal: and the Biochemical Engineering Journal, 61, 233–240.

    Article  Google Scholar 

  26. Hilge-Rotmann, B., & Rehm, H.-J. (1991). Applied Microbiology and Biotechnology, 34, 502–508.

    Article  CAS  Google Scholar 

  27. Abdel-Banat, B. M., Hoshida, H., Ano, A., Nonklang, S., & Akada, R. (2010). Applied Microbiology and Biotechnology, 85, 861–867.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Vietnam National University, Ho Chi Minh City (Project B2012-20-11TD/HD-KHCN)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Van Viet Man Le.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du Le, H., Thanonkeo, P. & Le, V.V.M. Impact of High Temperature on Ethanol Fermentation by Kluyveromyces marxianus Immobilized on Banana Leaf Sheath Pieces. Appl Biochem Biotechnol 171, 806–816 (2013). https://doi.org/10.1007/s12010-013-0411-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0411-z

Keywords

Navigation