Skip to main content
Log in

Vermicomposting Smart Closed Reactor Design and Performance Assessment by Using Sewage Sludge

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

A Correction to this article was published on 17 December 2021

This article has been updated

Abstract

This study aims to design a smart closed reactor of vermicomposting to convert sewage sludge and any organic waste to high-quality vermicompost. In this reactor design, all aspects of growth and reproduction of Eisenia Fetida worms, such as aeration, temperature, light, and moisture, were considered. We analyzed the physicochemical, bacterial, and microstructural of produced vermicompost and growth rate of worms in a substrate of 70% sewage sludge, 20% cow manure, and 10% sugarcane bagasse in a container and the smart reactor. The results show that vermicomposting in the smart reactor took 50% less time and 30% more worm growth rate to produce the same quality as in a container. After vermicomposting in the reactor, the parameters of pH, fecal coliform, phosphorus, organic matter, and C/N decreased whereas the parameters of carbon, nitrogen, nitrate, ammonia nitrate, and EC increased, slightly. Although, the EC amount of the reactor production is more than the container one, the amount of moisture, phosphorus, and organic matter of the vermicompost in the container is more than the reactor one. Based on the odor absorption and leachate elimination of this reactor, we recommend that it be utilized for vermicompost production, including out of smelly organic wastes such as sewage sludge, even in any public zone and personal houses.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

Abbreviations

SR:

Smart Reactor

VR:

Vermicomposting

PLC:

Programmable Logic Controllers

SS:

Sewage Sludge

CM:

Cow Manure

SB:

Sugarcane Bagasse

References

  1. Haynes, R.J., Naidu, R.: Influence of lime, fertilizer and manure applications on soil organic matter content and soil physical conditions: A review. Nutr. Cycl. Agroecosyst. 51, 123–137 (1998). https://doi.org/10.1023/A:1009738307837

    Article  Google Scholar 

  2. Garg, V.K., Yadav, Y.K., Sheoran, A., Chand, S., Kaushik, P.: Livestock excreta management through vermicomposting using an epigeic earthworm Eisenia foetida. Environmentalist 26, 269–276 (2006). https://doi.org/10.1007/s10669-006-8641-z

    Article  Google Scholar 

  3. Gupta, R., Garg, V.K.: Stabilization of primary sewage sludge during vermicomposting. J. Hazard. Mater. 153, 1023–1030 (2008). https://doi.org/10.1016/j.jhazmat.2007.09.055

    Article  Google Scholar 

  4. De Neve, S., Hofman, G.: Influence of soil compaction on carbon and nitrogen mineralization of soil organic matter and crop residues. Biol. Fertil. Soils 30, 544–549 (2000). https://doi.org/10.1007/s003740050034

    Article  Google Scholar 

  5. Trinsoutrot, I., Nicolardot, B., Justes, E., Recous, S.: Decomposition in the field of residues of oilseed rape grown at two levels of nitrogen fertilisation. Effects on the dynamics of soil mineral nitrogen between successive crops. Nutr. Cycl. Agroecosyst. 56, 125–137 (2000). https://doi.org/10.1023/A:1009838618133

    Article  Google Scholar 

  6. Hemalatha, B.: Vermicomposting of fruit waste and industrial sludge. International Journal of Advanced Engineering Technology. III, 60–63 (2012)

    Google Scholar 

  7. Huang, K., Li, F., Wei, Y., Chen, X., Technology, X.F.-B., 2013, U.: Changes of bacterial and fungal community compositions during vermicomposting of vegetable wastes by Eisenia foetida. Elsevier. (2013)

  8. Fu, X., Huang, K., Chen, X., Li, F., Cui, G.: Feasibility of vermistabilization for fresh pelletized dewatered sludge with earthworms Bimastus parvus. Biores. Technol. 175, 646–650 (2015). https://doi.org/10.1016/j.biortech.2014.11.007

    Article  Google Scholar 

  9. Huang, K., Xia, H., Cui, G., Li, F.: Effects of earthworms on nitrification and ammonia oxidizers in vermicomposting systems for recycling of fruit and vegetable wastes. Sci. Total Environ. 578, 337–345 (2017). https://doi.org/10.1016/j.scitotenv.2016.10.172

    Article  Google Scholar 

  10. Lazcano, C., Gómez-Brandón, M., Domínguez, J.: Comparison of the effectiveness of composting and vermicomposting for the biological stabilization of cattle manure. Chemosphere 72, 1013–1019 (2008). https://doi.org/10.1016/j.chemosphere.2008.04.016

    Article  Google Scholar 

  11. Alidadi, H., Saffari, A.R., Ketabi, D., Peiravi, R., Hosseinzadeh, A.: Comparison of Vermicompost and Cow Manure Efficiency on the Growth and Yield of Tomato Plant. Health Scope (2014). https://doi.org/10.17795/jhealthscope-14661

    Article  Google Scholar 

  12. Sharma, K., Garg, V.K.: Comparative analysis of vermicompost quality produced from rice straw and paper waste employing earthworm Eisenia fetida (Sav.). Biores. Technol. 250, 708–715 (2018). https://doi.org/10.1016/j.biortech.2017.11.101

    Article  Google Scholar 

  13. Castillo-González, E., Giraldi-Díaz, M.R., De Medina-Salas, L., Sánchez-Castillo, M.P.: Pre-composting and vermicomposting of pineapple (Ananas comosus) and vegetable waste. Applied Sciences (Switzerland). (2019). https://doi.org/10.3390/app9173564

    Article  Google Scholar 

  14. Majlessi, M., Eslami, A., Najafi Saleh, H., Mirshafieean, S., Babaii, S.: Vermicomposting of food waste: Assessing the stability and maturity. Iranian Journal of Environmental Health Science and Engineering. (2012). https://doi.org/10.1186/1735-2746-9-25

    Article  Google Scholar 

  15. Ghorbani, M., Sabour, M.R.: Global trends and characteristics of vermicompost research over the past 24 years, https://link.springer.com/article/https://doi.org/10.1007/s11356-020-11119-x, (2021)

  16. Ghorbani, M., Dahrazma, B., Fazlolah Saghravani, S., Yousofizinsaz, G.: A comparative study on physicochemical properties of environmentally-friendly lightweight bricks having potato peel powder and sour orange leaf. Constr. Build. Mater. 276, 121937 (2021). https://doi.org/10.1016/j.conbuildmat.2020.121937

    Article  Google Scholar 

  17. Ansari, A.A., Rajpersaud, J.: Physicochemical Changes during Vermicomposting of Water Hyacinth ( Eichhornia crassipes ) and Grass Clippings. ISRN Soil Science. 2012, 1–6 (2012). https://doi.org/10.5402/2012/984783

    Article  Google Scholar 

  18. Fernández-Luqueño, F., Reyes-Varela, V., Martínez-Suárez, C., Salomón-Hernández, G., Yáñez-Meneses, J., Ceballos-Ramírez, J.M., Dendooven, L.: Effect of different nitrogen sources on plant characteristics and yield of common bean (Phaseolus vulgaris L.). Biores. Technol. 101, 396–403 (2010). https://doi.org/10.1016/j.biortech.2009.07.058

    Article  Google Scholar 

  19. Contreras-Ramos, S.M., Escamilla-Silva, E.M., Dendooven, L.: Vermicomposting of biosolids with cow manure and oat straw. Biol. Fertil. Soils 41, 190–198 (2005). https://doi.org/10.1007/s00374-004-0821-8

    Article  Google Scholar 

  20. Ndegwa, P.M., Thompson, S.A.: Integrating composting and vermicomposting in the treatment and bioconversion of biosolids. Biores. Technol. 76, 107–112 (2001). https://doi.org/10.1016/S0960-8524(00)00104-8

    Article  Google Scholar 

  21. Aira, M., Monroy, F., Domínguez, J.: Eisenia fetida (Oligochaeta: Lumbricidae) modifies the structure and physiological capabilities of microbial communities improving carbon mineralization during vermicomposting of pig manure. Microb. Ecol. 54, 662–671 (2007). https://doi.org/10.1007/s00248-007-9223-4

    Article  Google Scholar 

  22. Vijayan, T., Ya, D.: Automatic water and fertilizer sprinkling system based on PLC for Agriculture application. International Journal of MC Square Scientific Research. 9, 126–134 (2017). https://doi.org/10.20894/ijmsr.117.009.002.015

    Article  Google Scholar 

  23. Futao, Z., Wei, D., Yiheng, X., Zhiren, H.: Programmable logic controller applied in steam generators water levels. In: Conference Record - IAS Annual Meeting (IEEE Industry Applications Society). pp. 1551–1556 (1996)

  24. Bayindir, R., Cetinceviz, Y.: A water pumping control system with a programmable logic controller (PLC) and industrial wireless modules for industrial plants-An experimental setup. ISA Trans. 50, 321–328 (2011). https://doi.org/10.1016/j.isatra.2010.10.006

    Article  Google Scholar 

  25. Ding, J.T., Tu, H.Y., Zang, Z.L., Huang, M., Zhou, S.J.: Precise control and prediction of the greenhouse growth environment of Dendrobium candidum. Comput. Electron. Agric. 151, 453–459 (2018). https://doi.org/10.1016/j.compag.2018.06.037

    Article  Google Scholar 

  26. Liu, X., Zhang, T., Li, B., Tian, F., … Y.T.-2018 37th C., 2018, U.: Wireless measurement and control system of environmental parameters in greenhouse based on ZigBee technology. ieeexplore.ieee.org. (2018)

  27. Erickson, K.T.: Programmable logic controllers. IEEE Potentials 15, 14–17 (1996). https://doi.org/10.1109/45.481370

    Article  Google Scholar 

  28. Edan, Y., Pliskin, N.: Transfer of software engineering tools from information systems to production systems. Comput. Ind. Eng. 39, 19–34 (2001). https://doi.org/10.1016/S0360-8352(00)00062-0

    Article  Google Scholar 

  29. Ioannides, M.G.: Design and implementation of PLC-based monitoring control system for induction motor. IEEE Trans. Energy Convers. 19, 469–476 (2004). https://doi.org/10.1109/TEC.2003.822303

    Article  Google Scholar 

  30. Alphonsus, E.R., Abdullah, M.O.: A review on the applications of programmable logic controllers (PLCs), https://www.sciencedirect.com/science/article/pii/S1364032116000551, (2016)

  31. Huuck, R.: Semantics and Analysis of Instruction List Programs. In: Electronic Notes in Theoretical Computer Science. pp. 3–18 (2005)

  32. BS EN 61131–1:1994: Programmable controllers. General information. Bsi

  33. Liu, J., Lv, Y. jun: The Application of LOGO! in Control System of a Transmission and Sorting Mechanism. In: Communications in Computer and Information Science. pp. 231–236. Springer, Berlin, Heidelberg (2011)

  34. A5E00324307–01: Drawing number Edition 1 Product information. (2001)

  35. Sita, I.V.: Train comfort, access and security using KNX and LOGO! controllers. In: Electrical Systems for Aircraft, Railway and Ship Propulsion, ESARS (2012)

  36. Tan, W.Y., Then, Y.L., Lew, Y.L., Tay, F.S.: Newly calibrated analytical models for soil moisture content and pH value by low-cost YL-69 hygrometer sensor. Measurement: Journal of the International Measurement Confederation. 134, 166–178 (2019). https://doi.org/10.1016/j.measurement.2018.10.071

    Article  Google Scholar 

  37. IAEA: Use of irradiation for chemical and microbial decontamination of water, wastewater and sludge - Final report of a co-ordinated research project 1995–1999- IAEA-TECDOC-1225. (2001)

  38. Borrely, S.I., Cruz, A.C., Del Mastro, N.L., Sampa, M.H.O., Somessari, E.S.: Radiation processing of sewage and sludge. A review. Progress in Nuclear Energy. 33, 3–21 (1998). https://doi.org/10.1016/s0149-1970(97)87287-3

    Article  Google Scholar 

  39. Zhang, L., Xu, C. (Charles), Champagne, P.: Energy recovery from secondary pulp/paper-mill sludge and sewage sludge with supercritical water treatment. Bioresource Technology. 101, 2713–2721 (2010). Doi: https://doi.org/10.1016/j.biortech.2009.11.106

  40. Ouatmane, A., Provenzano, M.R., Hafidi, M., Senesi, N.: Compost maturity assessment using calorimetry, spectroscopy and chemical analysis. Compost Science and Utilization. 8, 124–134 (2000). https://doi.org/10.1080/1065657X.2000.10701758

    Article  Google Scholar 

  41. Suthar, S., Singh, S.: Vermicomposting of domestic waste by using two epigeic earthworms (Perionyx excavatus and Perionyx sansibaricus). Int. J. Environ. Sci. Technol. 5, 99–106 (2008). https://doi.org/10.1007/BF03326002

    Article  Google Scholar 

  42. Palsania, J., Sharma, R., Srivastava, J.K., Sharma, D.: Effect of moisture content variation over kinetic reaction rate during vermicomposting process. Appl. Ecol. Environ. Res. (2008). https://doi.org/10.15666/aeer/0602_049061

    Article  Google Scholar 

  43. Zularisam, A.W., Zahirah, Z.S., Zakaria, I., Syukri, M.M., Anwar, A., Sakinah, M.: Production of biofertilizer from vermicomposting process of municipal sewage sludge. J. Appl. Sci. 10, 580–584 (2010). https://doi.org/10.3923/jas.2010.580.584

    Article  Google Scholar 

  44. Manyuchi, M.M.M., Phiri Anthony, Chirinida, N., Muredzi, P., Govhaand, J., Sengudzwa, T.: Vermicompostingof Waste Corn Pulp Blended with Cow Dung Manure using Eisenia Fetida. International Journal of Chemical and Molecular Engineering. 6: 753–756 (2012)

  45. Khwairakpam, M., Bhargava, R.: Vermitechnology for sewage sludge recycling. J. Hazard. Mater. 161, 948–954 (2009). https://doi.org/10.1016/j.jhazmat.2008.04.088

    Article  Google Scholar 

  46. Math, R.K., Dharwadkar, N. V: A wireless sensor network based low cost and energy efficient frame work for precision agriculture. In: 2017 International Conference on Nascent Technologies in Engineering, ICNTE 2017 - Proceedings (2017)

  47. Neidle, M.: Electrical Installation Technology. (1982)

  48. Garg, V.K., Gupta, R.: Effect of temperature variations on vermicomposting of household solid waste and fecundity of eisenia fetida. Bioremediat. J. 15, 165–172 (2011). https://doi.org/10.1080/10889868.2011.598487

    Article  Google Scholar 

  49. Gim-Krumm, M., Donoso, P., Zuñiga, R.N., Estay, H., Troncoso, E.: A comprehensive study of glucose transfer in the human small intestine using an in vitro intestinal digestion system (i-IDS) based on a dialysis membrane process. Elsevier. (2018). https://doi.org/10.1016/j.memsci.2018.07.080

    Article  Google Scholar 

  50. Garcia-Robledo, C., Charlotten-Silva, M., Cruz, C., Kuprewicz, E.K.: Low quality diet and challenging temperatures affect vital rates, but not thermal tolerance in a tropical insect expanding its diet to an exotic plant. J. Therm. Biol 77, 7–13 (2018). https://doi.org/10.1016/j.jtherbio.2018.07.018

    Article  Google Scholar 

  51. Johnsonelectric.com: Johnson Electric - Johnson Electric, https://www.johnsonelectric.com/en.

  52. Sabagh, E.: EL Sabagh et al.: Wheat (Triticum aestivum L) production under drought and heat stress-adverse effects, mechanisms and mitigation: a review-1-APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH X(y): pp-pp WHEAT (TRITICUM AESTIVUM L) PRODUCTION UNDER DROUGHT AN. Appl Ecol Environ Res. 15, 1625–1651 (2018).

  53. Edwards, C.A., Arancon, N.Q.: the Use of Earthworms in Organic Waste Managements

  54. Arrhenius, O.: Influence of Soil Reaction on Earthworms. Ecology 2, 255–257 (1921). https://doi.org/10.2307/1928978

    Article  Google Scholar 

  55. Salisbury, E.J.: The Influence of Earthworms on Soil Reaction and the Stratification of Undisturbed Soils. J. Linn. Soc. London, Bot. 46, 415–425 (1924). https://doi.org/10.1111/j.1095-8339.1924.tb00496.x

    Article  Google Scholar 

  56. Petrov, B.C.: The active reaction of soil (pH) as a factor in the distribution of earthworms. Zoological Journal. 25, 107–110 (1946)

    Google Scholar 

  57. Electronics, S.: Mean Well Switching Power Supply - 12VDC, 12.5A, https://www.meanwell.com/productSeries.aspx#, (2016)

  58. EPA: Revised Total Coliform Rule And Total Coliform Rule | Drinking Water Requirements for States and Public Water Systems | US EPA. 1–5 (2017)

  59. Institute of Standards and Industrial Research of Iran: Vermicompost- Physical and chemical Specifications. 1st. edition. (2011)

  60. Das, S., Pandey, P., Mohanty, S., Nayak, S.K.: Evaluation of biodegradability of green polyurethane/nanosilica composite synthesized from transesterified castor oil and palm oil based isocyanate. Int. Biodeterior. Biodegradation 117, 278–288 (2017). https://doi.org/10.1016/j.ibiod.2017.01.015

    Article  Google Scholar 

  61. Soobhany, N., Gunasee, S., Rago, Y.P., Joyram, H., Raghoo, P., Mohee, R., Garg, V.K.: Spectroscopic, thermogravimetric and structural characterization analyses for comparing Municipal Solid Waste composts and vermicomposts stability and maturity. Biores. Technol. 236, 11–19 (2017). https://doi.org/10.1016/j.biortech.2017.03.161

    Article  Google Scholar 

Download references

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

MG: Conceptualization, Methodology, Validation, Formal analysis, Investigation, Resources, Data Curation, Writing—Original Draft, Visualization, Project administration. MRS Supervision. MB: Software.

Corresponding author

Correspondence to Mona Ghorbani.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Ethical Approval

It has not been published elsewhere and that it has not been submitted simultaneously for publication elsewhere.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: the affiliations of the authors are updated.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghorbani, M., Sabour, M.R. & Bidabadi, M. Vermicomposting Smart Closed Reactor Design and Performance Assessment by Using Sewage Sludge. Waste Biomass Valor 12, 6177–6190 (2021). https://doi.org/10.1007/s12649-021-01426-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-021-01426-w

Keywords

Navigation