Skip to main content

Advertisement

Log in

Testing the Waste Based Biorefinery Concept: Pilot Scale Cultivation of Microalgal Species on Spent Anaerobic Digestate Fluids

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Purpose

A waste based biorefinery approach has been tested.

Methods

This has been investigated by culturing in a 800 L photobioreactor two autotrophic microalgae namely Nannochloropsis oceanica and Scenedesmus quadricauda utilising filtered spent anaerobic digestate fluids of N:P ratio 14.22 as substrate.

Results

Significant rates of bioremediation simultaneously with biomass and associated end product formation were achieved. Nitrogen and phosphorus of waste based media was decreased up to 90%. The biomass biochemical analysis of the microalgae when grown on the waste based formulated media demonstrated the comparable content of lipids and proteins with the species grown on f/2 media.

Conclusions

Theoretical biomethane potential generation, should the algal cultures be placed in an anaerobic digester, was calculated at 0.58 L CH4 g−1 VS for N. oceanica and 0.48 L CH4 g−1 VS for S. quadricauda showing comparable results with other studies of different source of biomass.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Morel, F.M.M.: Kinetics of nutrient uptake and growth in phytoplankton 1. J. Phycol. 23(2), 137–150 (1987). https://doi.org/10.1111/j.1529-8817.1987.tb04436.x

    Article  Google Scholar 

  2. Scholz, R.W., Ulrich, A.E., Eilittä, M., Roy, A.: Sustainable use of phosphorus: a finite resource. Sci. Total Environ. 461–462, 799–803 (2013). https://doi.org/10.1016/j.scitotenv.2013.05.043

    Article  Google Scholar 

  3. de Ridder, M., de Jong,S., Polchar, J., Lingeman, S.: Risks and opportunities in the global phosphate rock market the Hague Centre for Strategic Studies (HCSS) Rapport No 17|12|12

  4. Slade, R., Bauen, A.: Micro-algae cultivation for biofuels: cost, energy balance, environmental impacts and future prospects. Biomass Bioenergy 53(Supplement C), 29–38 (2013). https://doi.org/10.1016/j.biombioe.2012.12.019

    Article  Google Scholar 

  5. Shilton, A.N., Powell, N., Guieysse, B.: Plant based phosphorus recovery from wastewater via algae and macrophytes. Curr. Opin. Biotechnol. 23(6), 884–889 (2012). https://doi.org/10.1016/j.copbio.2012.07.002

    Article  Google Scholar 

  6. Tigini, V., Franchino, M., Bona, F., Varese, G.C.: Is digestate safe? A study on its ecotoxicity and environmental risk on a pig manure. Sci. Total Environ. 551–552(Supplement C), 127–132 (2016). https://doi.org/10.1016/j.scitotenv.2016.02.004

    Article  Google Scholar 

  7. Pittman, J.K., Dean, A.P., Osundeko, O.: The potential of sustainable algal biofuel production using wastewater resources. Bioresour. Technol. 102(1), 17–25 (2011). https://doi.org/10.1016/j.biortech.2010.06.035

    Article  Google Scholar 

  8. Christenson, L., Sims, R.: Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnol. Adv. 29(6), 686–702 (2011). https://doi.org/10.1016/j.biotechadv.2011.05.015

    Article  Google Scholar 

  9. Morales-Amaral, M.D.M., Gómez-Serrano, C., Acién, F.G., Fernández-Sevilla, J.M., Molina-Grima, E.: Production of microalgae using centrate from anaerobic digestion as the nutrient source. Algal Res. 9, 297–305 (2015). https://doi.org/10.1016/j.algal.2015.03.018

    Article  Google Scholar 

  10. Silkina, A., Zacharof, M.-P., Hery, G., Nouvel, T., Lovitt, R.W.: Formulation and utilisation of spent anaerobic digestate fluids for the growth and product formation of single cell algal cultures in heterotrophic and autotrophic conditions. Bioresour. Technol. 244(Part 2), 1445–1455 (2017). https://doi.org/10.1016/j.biortech.2017.05.133

    Article  Google Scholar 

  11. Stiles, W.A.V., Styles, D., Chapman, S.P., Esteves, S., Bywater, A., Melville, L., et al.: Using microalgae in the circular economy to valorise anaerobic digestate: challenges and opportunities. Bioresour. Technol. 267, 732–742 (2018)

    Article  Google Scholar 

  12. Gonçalves, A.L., Pires, J.C.M., Simões, M.: A review on the use of microalgal consortia for wastewater treatment. Algal Res. 24, 403–415 (2017). https://doi.org/10.1016/j.algal.2016.11.008

    Article  Google Scholar 

  13. Prajapati, S.K., Kaushik, P., Malik, A., Vijay, V.K.: Phycoremediation coupled production of algal biomass, harvesting and anaerobic digestion: possibilities and challenges. Biotechnol. Adv. 31, 1408–1425 (2013). https://doi.org/10.1016/j.biotechadv.2013.06.005

    Article  Google Scholar 

  14. Sakarika, M., Kornaros, M.: Chlorella vulgaris as a green biofuel factory: comparison between biodiesel, biogas and combustible biomass production. Bioresour. Technol. 273, 237–243 (2019). https://doi.org/10.1016/j.biortech.2018.11.017

    Article  Google Scholar 

  15. Mayers, J.J., Flynn, K.J., Shields, R.J.: Rapid determination of bulk microalgal biochemical composition by Fourier-transform Infrared spectroscopy. Bioresour. Technol. 148, 215–220 (2013). https://doi.org/10.1016/j.biortech.2013.08.133

    Article  Google Scholar 

  16. McGinn, P.J., Dickinson, K.E., Park, K.C., Whitney, C.G., MacQuarrie, S.P., Black, F.J., O’Leary, S.J.B.: Assessment of the bioenergy and bioremediation potentials of the microalga Scenedesmus sp. AMDD cultivated in municipal wastewater effluent in batch and continuous mode. Algal Res. 1(2), 155–165 (2012). https://doi.org/10.1016/j.algal.2012.05.001

    Article  Google Scholar 

  17. Dickinson, K.E., Whitney, C.G., McGinn, P.J.: Nutrient remediation rates in municipal wastewater and their effect on biochemical composition of the microalga Scenedesmus sp. AMDD. Algal Res. 2(2), 127–134 (2013). https://doi.org/10.1016/j.algal.2013.01.009

    Article  Google Scholar 

  18. Zacharof, M.-P., Lovitt, R.W.: The filtration characteristics of anaerobic digester effluents employing cross flow ceramic membrane microfiltration for nutrient recovery. Desalination 341, 27–37 (2014)

    Article  Google Scholar 

  19. Chen, C.-Y., Yeh, K.-L., Su, H.-M., Lo, Y.-C., Chen, W.-M., Chang, J.-S.: Strategies to enhance cell growth and achieve high-level oil production of a Chlorella vulgaris isolate. Biotechnol. Prog. 26, 679–686 (2010). https://doi.org/10.1002/btpr.381

    Article  Google Scholar 

  20. Xiao, Y., Zhang, J., Cui, J., Feng, Y., Cui, Q.: Metabolic profiles of Nannochloropsis oceanica IMET1 under nitrogen-deficiency stress. Bioresour. Technol. 130, 731–738 (2013). https://doi.org/10.1016/j.biortech.2012.11.116

    Article  Google Scholar 

  21. Mayers, J.J., Ekman Nilsson, A., Albers, E., Flynn, K.J.: Nutrients from anaerobic digestion effluents for cultivation of the microalga Nannochloropsis sp.—impact on growth, biochemical composition and the potential for cost and environmental impact savings. Algal Res. 26(Supplement C), 275–286 (2017). https://doi.org/10.1016/j.algal.2017.08.007

    Article  Google Scholar 

  22. Guillard, R.R.L., Ryther, J.H.: Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea Cleve. Can. J. Microbiol. 8, 229–239 (1962)

    Article  Google Scholar 

  23. http://www.variconaqua.com/products-services/algal-nutrients-and-culture-media/. Accessed 19 Mar 2019

  24. Zacharof, M.P., Vouzelaud, C., Mandale, S.J., Lovitt, R.W.: Valorization of spent anaerobic digester effluents through production of platform chemicals using Clostridium butyricum. Biomass Bioenergy 81, 294–303 (2015)

    Article  Google Scholar 

  25. Silkina, A., Nelson, G.D., Bayliss, C.E., et al.: Bioremediation efficacy—comparison of nutrient removal from an anaerobic digest waste-based medium by an algal consortium before and after cryopreservation. J. Appl. Phycol. 29, 1331–1341 (2017). https://doi.org/10.1007/s10811-017-1066-x

    Article  Google Scholar 

  26. Stephenson, A.L., Dennis, J.S., Howe, C.J., Scott, S.A., Smith, A.G.: Influence of nitrogen-limitation regime on the production by Chlorella vulgaris of lipids for biodiesel feedstocks. Biofuels 1(1), 47–58 (2010). https://doi.org/10.4155/bfs.09.1

    Article  Google Scholar 

  27. Safi, C., Charton, M., Pignolet, O., Silvestre, F., Vaca-Garcia, C., Pontalier, P.Y.: Influence of microalgae cell wall characteristics on protein extractability and determination of nitrogen-to-protein conversion factors. J. Appl. Phycol. 25(2), 523–529 (2013)

    Article  Google Scholar 

  28. Folch, J., Lees, M., Sloane Stanley, G.H.: A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 226(1), 497–509 (1957)

    Google Scholar 

  29. Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., Smith, F.: Colorimetric method for determination of sugars and related substances. Anal. Chem. 28(3), 350–356 (1956)

    Article  Google Scholar 

  30. European commission directive. In 98/15/EC, Official Journal of European Communiation (1998)

  31. Bougaran, G., Bernard, O., Sciandra, A.: Modeling continuous cultures of microalgae colimited by nitrogen and phosphorus. J. Theor. Biol. 265(3), 443–454 (2010). https://doi.org/10.1016/j.jtbi.2010.04.018

    Article  MathSciNet  MATH  Google Scholar 

  32. Gerardo, M.L., Oatley-Radcliffe, D.L., Lovitt, R.W.: Integration of membrane technology in microalgae biorefineries. J. Membr. Sci. 464, 86–99 (2014). https://doi.org/10.1016/j.memsci.2014.04.010

    Article  Google Scholar 

  33. Prajapati, S.K., Choudhary, P., Malik, A., Vijay, V.K.: Algae mediated treatment and bioenergy generation process for handling liquid and solid waste from dairy cattle farm. Bioresour. Technol. 167(Supplement C), 260–268 (2014). https://doi.org/10.1016/j.biortech.2014.06.038

    Article  Google Scholar 

  34. Prajapati, S.K., Malik, A., Vijay, V.K.: Comparative evaluation of biomass production and bioenergy generation potential of Chlorella spp. through anaerobic digestion. Appl. Energy 114, 790–797 (2014). https://doi.org/10.1016/j.apenergy.2013.08.021

    Article  Google Scholar 

  35. Gerardo, M.L., Zacharof, M.P., Lovitt, R.W.: Strategies for the recovery of nutrients and metals from anaerobically digested dairy farm sludge using cross-flow microfiltration. Water Res. 47(14), 4833–4842 (2013). https://doi.org/10.1016/j.watres.2013.04.019

    Article  Google Scholar 

  36. Koszel, M., Lorencowicz, E.: Agricultural use of biogas digestate as a replacement fertilizers. Agric. Agric. Sci. Proc. 7, 119–124 (2015). https://doi.org/10.1016/j.aaspro.2015.12.004

    Article  Google Scholar 

  37. Samorì, G., Samorì, C., Guerrini, F., Pistocchi, R.: Growth and nitrogen removal capacity of Desmodesmus communis and of a natural microalgae consortium in a batch culture system in view of urban wastewater treatment: part I. Water Res. 47(2), 791–801 (2013). https://doi.org/10.1016/j.watres.2012.11.006

    Article  Google Scholar 

  38. Oldroyd, G.E.D., Dixon, R.: Biotechnological solutions to the nitrogen problem. Curr. Opin. Biotechnol. 26(Supplement C), 19–24 (2014). https://doi.org/10.1016/j.copbio.2013.08.006

    Article  Google Scholar 

  39. Collos, Y., Harrison, P.J.: Acclimation and toxicity of high ammonium concentrations to unicellular algae. Mar. Pollut. Bull. 80(1–2), 8–23 (2014). https://doi.org/10.1016/j.marpolbul.2014.01.006

    Article  Google Scholar 

  40. Ji, F., Zhou, Y., Pang, A., Ning, L., Rodgers, K., Liu, Y., Dong, R.: Fed-batch cultivation of Desmodesmus sp. in anaerobic digestion wastewater for improved nutrient removal and biodiesel production. Bioresour. Technol. 184, 116–122 (2015). https://doi.org/10.1016/j.biortech.2014.09.144

    Article  Google Scholar 

  41. Pires, J.C.M.: COP21: the algae opportunity? Renew. Sustain. Energy Rev. 79(Supplement C), 867–877 (2017). https://doi.org/10.1016/j.rser.2017.05.197

    Article  Google Scholar 

  42. Ayre, J.M., Moheimani, N.R., Borowitzka, M.A.: Growth of microalgae on undiluted anaerobic digestate of piggery effluent with high ammonium concentrations. Algal Res. 24, 218–226 (2017). https://doi.org/10.1016/j.algal.2017.03.023

    Article  Google Scholar 

  43. Prajapati, S.K., Kumar, P., Malik, A., Vijay, V.K.: Bioconversion of algae to methane and subsequent utilization of digestate for algae cultivation: a closed loop bioenergy generation process. Bioresour. Technol. 158, 174–180 (2014). https://doi.org/10.1016/j.biortech.2014.02.023

    Article  Google Scholar 

  44. Pivato, A., Vanin, S., Raga, R., Lavagnolo, M.C., Barausse, A., Rieple, A., Cossu, R.: Use of digestate from a decentralized on-farm biogas plant as fertilizer in soils: an ecotoxicological study for future indicators in risk and life cycle assessment. Waste Manag. 49((Supplement C)), 378–389 (2016). https://doi.org/10.1016/j.wasman.2015.12.009

    Article  Google Scholar 

  45. Prajapati, S.K., Kumar, P., Malik, A., Vijay, V.K.: Cultivation of native algal consortium in semi-continuous pilot scale raceway pond for greywater treatment coupled with potential methane production. J. Environ. Chem. Eng. 5, 5581–5587 (2017). https://doi.org/10.1016/j.jece.2017.10.044

    Article  Google Scholar 

  46. Kumar, P., Prajapati, S.K., Malik, A., et al.: Evaluation of biomethane potential of waste algal biomass collected from eutrophied lake: effect of source of inocula, co-substrate, and VS loading. J. Appl. Phycol. 31, 533–545 (2019). https://doi.org/10.1007/s10811-018-1585-0

    Article  Google Scholar 

  47. Rodolfi, L., ChiniZittelli, G., Bassi, N., Padovani, G., Biondi, N., Bonini, G., Tredici, M.R.: Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol. Bioeng. 102(1), 100–112 (2009). https://doi.org/10.1002/bit.22033

    Article  Google Scholar 

  48. Uggetti, E., Sialve, B., Latrille, E., Steyer, J.-P.: Anaerobic digestate as substrate for microalgae culture: the role of ammonium concentration on the microalgae productivity. Bioresour. Technol. 152, 437–443 (2014). https://doi.org/10.1016/j.biortech.2013.11.036

    Article  Google Scholar 

  49. Zhou WenGuang, R.R.: Biological mitigation of carbon dioxide via microalgae: recent development and future direction. Sci. Sin. Chim. 44(1), 63–78 (2014). https://doi.org/10.1360/032013-256

    Article  Google Scholar 

  50. Van Den Hende, S., Carré, E., Cocaud, E., Beelen, V., Boon, N., Vervaeren, H.: Treatment of industrial wastewaters by microalgal bacterial flocs in sequencing batch reactors. Bioresour. Technol. 161, 245–254 (2014). https://doi.org/10.1016/j.biortech.2014.03.057

    Article  Google Scholar 

  51. Rothlisberger-Lewis, K.L., Foster, J.L., Hons, F.M.: Soil carbon and nitrogen dynamics as affected by lipid-extracted algae application. Geoderma 262(Supplement C), 140–146 (2016). https://doi.org/10.1016/j.geoderma.2015.08.018

    Article  Google Scholar 

  52. Mayhead, E., Silkina, A., Llewellyn, C.A., Fuentes-Grünewald, C.: Comparing nutrient removal from membrane filtered and unfiltered domestic wastewater using Chlorella vulgaris. Biology 7, 12 (2018). https://doi.org/10.3390/biology7010012

    Article  Google Scholar 

Download references

Acknowledgements

This work was made by financial support from FP7 BioAlgaeSorb, INTERREG EnAlgae and ALG-AD projects. The authors are also grateful to Pr. Kevin Flynn, Dr. Ingrid Lupatsch and Dr Phillip Kenny for their helpful suggestions during manuscript preparation. This manuscript was partially written and submitted for potential evaluation at University of South Wales (USW), Sustainable Environment Center (SERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myrto-Panagiota Zacharof.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silkina, A., Zacharof, MP., Ginnever, N.E. et al. Testing the Waste Based Biorefinery Concept: Pilot Scale Cultivation of Microalgal Species on Spent Anaerobic Digestate Fluids. Waste Biomass Valor 11, 3883–3896 (2020). https://doi.org/10.1007/s12649-019-00766-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-019-00766-y

Keywords

Navigation