Skip to main content
Log in

Modeling the Electronic, Structural and Vibrational Properties of Cubic SiC Nanocrystals Built from Diamondoid Structures

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Silicon carbide diamondoids are used as building blocks of cubic SiC nanocrystals. Density functional theory (DFT) at the generalized gradient approximation level of Perdew, Burke and Ernzerhof (PBE) with 6-31G(d) basis is used to investigate the electronic structure of these diamondoids up to 12 cages. The results show that the energy gap and bond lengths generally decrease with shape fluctuations as the number of atoms increases. Electronic and structural properties are in good agreement with both previous experimental and theoretical results. Vibrational modes converge to the SiC experimental bulk limit of the radial breathing mode while hydrogen related modes are nearly constant in their frequencies. It is suggested in this work to identify SiC-diamondoids from their hydrogen vibrational modes finger print in the range (1000-3000 cm−1) and identify the size of the diamondoid from low frequency vibrational modes (0-1000 cm−1) such as radial breathing modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stephen ES, Anant A (2004) Advances in Silicon Carbide processing and Application Artech House, Inc., Boston, London

  2. Catellani A, Galli G, Gygi F (1996) Phys Rev Lett 77:5090

    Article  CAS  Google Scholar 

  3. Baumeier B, Krüger P, Pollmann J (2006) Phys Rev B 73:195205

    Article  Google Scholar 

  4. Mercer JL (1996) Rev Phys B 54:4650

    Article  CAS  Google Scholar 

  5. Park CH, Cheong BH, Lee KH, Chang KJ (1994) Phys Rev B 49:4485

    Article  CAS  Google Scholar 

  6. Pennington G, Goldsman N (2001) Phys Rev B 64:045104

    Article  Google Scholar 

  7. Soukiassian P (2002) Sci Mater Eng B96:115

    Article  CAS  Google Scholar 

  8. Vashishta P, Kalia RK, Nakano A, Rino JP (2007) J Appl Phys 101:103515

    Article  Google Scholar 

  9. Patrick AD, Dong X, Allison TC, Blaisten-Barojas E (2009) J Chem Phys 130:244704

    Article  Google Scholar 

  10. Vörös M, Deák P, Frauenheim T, Gali A (2010) Appl Phys Lett 96:051909

    Article  Google Scholar 

  11. Peyghan AA, Baei MT, Hashemian S, Torabi P (2013) J Cluster Sci 24:591

    Article  CAS  Google Scholar 

  12. Gao G, Ashcroft NW, Hoffmann R (2013) J Am Chem Soc 135:11651

    Article  CAS  Google Scholar 

  13. Fischer J, Baumgartner J, Marschner C (2005) Science 310:825

    Article  CAS  Google Scholar 

  14. Landt L, Klünder K, Dahl JE, Carlson RMK, Möller T, Bostedt C (2009) Phys Rev Lett 047402:103

    Google Scholar 

  15. Abdulsattar MA, Sultan TR, Saeed AM (2013) Adv Condens Matter Phys 713267:2013

    Google Scholar 

  16. Ramachandran G, Manogaran S (2007) J Mol Struc-THEOCHEM 816:31

    Article  CAS  Google Scholar 

  17. Richardson SL, Park K, Baruah T, Pederson MR (2006) J Chem Soc Abstr 231:1

    Google Scholar 

  18. NIST NIST Computational chemistry comparison and benchmark database, release 15b, 2011. http://cccbdb.nist.gov/. Accessed 1 Jan 2014

  19. Gaussian 03 (2003) Gaussian 03, Revision B.01; Gaussian, Inc. Wallingford, CT, USA

  20. Abdulsattar Beilstein MA (2013) J Nanotechnol 4:262

    Google Scholar 

  21. Abdulsattar MA (2013) Silicon 5:229–237. doi:10.1007/s12633-013-9152-4

    Article  CAS  Google Scholar 

  22. Kittel C (2005) Introduction to Solid State Physics, eighth ed. Wiley

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mudar Ahmed Abdulsattar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdulsattar, M.A. Modeling the Electronic, Structural and Vibrational Properties of Cubic SiC Nanocrystals Built from Diamondoid Structures. Silicon 8, 239–244 (2016). https://doi.org/10.1007/s12633-014-9246-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-014-9246-7

Keywords

Navigation