Skip to main content
Log in

Diamondoids approach to electronic, structural, and vibrational properties of GeSi superlattice nanocrystals: a first-principles study

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Germanium silicide diamondoids are used to determine electronic, structural, and vibrational properties of GeSi superlattice nanocrystals and bulk as their building block limit. Density functional theory at the generalized gradient approximation level of Perdew, Burke, and Ernzerhof (PBE) with 6-31G(d) basis including polarization functions is used to investigate the electronic structure of these diamondoids. The investigated molecules and diamondoids range from GeSiH6 to Ge63Si63H92. The variation of the energy gap is shown from nearly 7 eV toward bulk value which is slightly higher than the average of Si and Ge energy gaps. Variations of bond lengths, tetrahedral, and dihedral angles as the number of atoms increases are shown taking into account the effect of shape fluctuations. Localized and delocalized electronic charge distribution and bonds for these molecules are discussed. Vibrational radial breathing mode (RBM) converges from its initial molecular value at 332 cm−1 to its bulk limit at 0 cm−1 (blue shift). Longitudinal optical-highest reduced mass mode (HRMM) converges from its initial molecular value 332 cm−1 to experimental bulk limit at 420.7 cm−1 (red shift). Hydrogen vibrational modes are nearly constant in their frequencies as the size of diamondoids increases in contrast with lower frequency Ge–Si vibrational modes. GeSi diamondoids can be identified from surface hydrogen vibrational modes fingerprint, while the size of these diamondoids can be identified from Ge–Si vibrational modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Tomanek D (2005) J Phys Condens Matter 17:R413

    Article  CAS  Google Scholar 

  2. McIntosh GC, Yoon M, Berber S, Tomanek D (2004) Phys Rev B 70:045401

    Article  Google Scholar 

  3. Dahl JE, Liu SG, Carlson RMK (2003) Science 299:96

    Article  CAS  Google Scholar 

  4. de Araujo PLB, Mansoori GA, de Araujo ES (2012) Int J Oil Gas Coal Technol 5:316

    Article  Google Scholar 

  5. Alias MFA, Rammo NN, Makadsi MN (2001) Renew Energy 24:347

    Article  CAS  Google Scholar 

  6. Abdulsattar MA, Al-Bayati Khalil H (2007) Phys Rev B 75:245201

    Article  Google Scholar 

  7. Abdulsattar MA, Sultan TR, Saeed AM (2013) Adv Condens Matter Phys 2013:713267

    Article  Google Scholar 

  8. Khutov BM, Klyuchko SV, Gurenko AO, Vasilenko AN, Balya AG, Rusanov EB, Brovarets VS (2012) Chem Heterocycl Compd 48:1251

    Article  Google Scholar 

  9. Richardson SL, Park K, Baruah T, Pederson MR (2006) J Chem Soc Abstr 231:1

    Google Scholar 

  10. Abdulsattar MA (2013) Silicon 5:229

    Article  CAS  Google Scholar 

  11. Ramachandran G, Manogaran S (2007) J Mol Struct THEOCHEM 816:31

    Article  CAS  Google Scholar 

  12. NIST Computational chemistry comparison and benchmark database, release 15b, 2011. http://cccbdb.nist.gov/. Accessed 1 Jan 2014

  13. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian 03, Revision B.01, Gaussian, Inc., Pittsburgh, (2003)

  14. Braunstein R, Moore AR, Herman F (1958) Phys Rev 109:695

    Article  CAS  Google Scholar 

  15. Ng MF, Zhang RQ (2006) J Phys Chem B 110:21528

    Article  CAS  Google Scholar 

  16. Nasir HN, Abdulsattar MA, Abduljalil HM (2012) Adv Condens Matter Phys 2012:348254

    Google Scholar 

  17. Zhou AQ, O’Hern CS, Regan L (2012) Biophys J 102:2345

    Article  CAS  Google Scholar 

  18. Pierre G, Boudon V, MKadmi EB, Burger H, Bermejo D, Martinez R (2002) J Mol Spectrosc 216:408

    Article  CAS  Google Scholar 

  19. Abdulsattar MA (2012) J Appl Phys 111:044306

    Article  Google Scholar 

  20. Abdulsattar MA (2013) Beilstein J Nanotechnol 4:262

    Article  Google Scholar 

  21. Kittel C (2005) Introduction to solid state physics, 8th edn. Wiley, Hoboken

    Google Scholar 

  22. Pages O, Hussein RH, Torres VJB (2013) J Appl Phys 114:033513

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mudar Ahmed Abdulsattar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdulsattar, M.A. Diamondoids approach to electronic, structural, and vibrational properties of GeSi superlattice nanocrystals: a first-principles study. Struct Chem 25, 1811–1818 (2014). https://doi.org/10.1007/s11224-014-0458-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-014-0458-7

Keywords

Navigation