Skip to main content
Log in

Predictive Validity of Different Walking Measures to Identify the Incident Long-Term Care Needs in Older Adults

  • Original Research
  • Published:
The journal of nutrition, health & aging

Abstract

Objectives

A comfortable walking speed is a suitable measurement of functional status in older adults. In addition to assessing their comfortable walking speed, two complex walking tests were administered to a cohort of older people, assuming that these tests would be a more sensitive predictor of the incident long-term care needs than comfortable walking speed.

Design

A prospective observational study was conducted to collect data.

Setting and Participants

Among the initial 5,563 community-dwelling independent older adults (aged ≥ 65 years), 935 were excluded and the data of 4,628 (mean age, 73.9 ± 5.5 years, 65–94 years; 2,052 men, 2,576 women) older adults were finally analyzed.

Methods

Three walking tasks were administered: comfortable, complicated balance, and Go-stop walking. Complicated balance walking was measured under comfortable walking conditions, with participants having to walk with their hands crossed at the shoulder joint at 90°. For the Go-stop walking test, the time taken to walk 2 meters was measured using a stopwatch. For two years following baseline assessments, participants received monthly follow-ups for incident certification of the need for care under the long-term care insurance (LTCI) system.

Results

Low performance in comfortable, complicated balance, and Go-stop walking were 29.8%, 37.7%, and 35.1%, respectively. During the 24-month follow-up period, 246 participants (5.3%) required LTCI certification. The Youden Index was used to determine the cut-points of the incident long-term care needs in the comfortable, complicated balance, and Go-stop walking conditions, which were 1.055 m/s, 0.936 m/s, and 3.205 seconds, respectively. Participants classified as exhibiting low performance included 1,381 (29.8%) under comfortable walking, 1,746 (37.7%) under complicated balance walking, and 1,623 (35.1%) under the Go-stop walking tests. The C-indices of the comfortable, complicated balance, and Go-stop walking tests were 0.72 (95% confidence interval (CI) 0.69–0.76), 0.71 (95% CI 0.67–0.74), and 0.65 (95% CI 0.61–0.69), respectively. Cox proportional hazards regression model revealed significant relationships between the incident long-term care needs and the comfortable (hazard ratio (HR) 2.14, 95% CI 1.62–2.84), complicated balance (1.81, 1.36–2.41), and Go-stop (1.46, 1.12–1.91) walking conditions.

Conclusions and Implications

The findings suggest that slow walking speed has a considerably greater impact on the incident long-term care needs in older adults. However, the complex walking task did not improve the predictive performance. Comfortable walking speed tests, which can easily be measured to predict the future incident long-term care needs, are effective tools in community health promotion and primary care.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

References

  1. Guzman-Castillo M, Ahmadi-Abhari S, Bandosz P, Capewell S, Steptoe A, Singh-Manoux A, Kivimaki M, Shipley MJ, Brunner EJ, O’Flaherry M. Forecasted trends in disability and life expectancy in England and Wales up to 2025: a modelling study. Lancet Public Health 2017;2(7):e307–e13. doi:https://doi.org/10.1016/S2468-2667(17)30091-9

    Article  PubMed  PubMed Central  Google Scholar 

  2. Tsutsui T, Muramatsu N. Care-needs certification in the long-term care insurance system of Japan. J Am Geriatr Soc 2005;53(3):522–7. doi: JGS53175[pii] https://doi.org/10.1111/j.1532-5415.2005.53175.x

    Article  PubMed  Google Scholar 

  3. Shimada H, Nitta J, Sasaki H, Watanabe T, Sakamoto T, Komoto S, Arai H. Japan’s long-term care issues: construction and adoption of the LIFE database for establishing evidence-based care practice. J Am Med Dir Assoc 2022;23(8):1433–34. doi:https://doi.org/10.1016/j.jamda.2022.05.010

    Article  PubMed  Google Scholar 

  4. Guralnik JM, Ferrucci L, Simonsick EM, Salive ME, Wallace RB. Lower-extremity function in persons over the age of 70 years as a predictor of subsequent disability. N Engl J Med 1995;332(9):556–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Shimada H, Suzukawa M, Tiedemann A, Kobayashi K, Yoshida H, Suzuki T. Which neuromuscular or cognitive test is the optimal screening tool to predict falls in frail community-dwelling older people? Gerontology 2009;55(5):532–8. doi: 000236364[pii]https://doi.org/10.1159/000236364

    Article  PubMed  Google Scholar 

  6. Tiedemann A, Shimada H, Sherrington C, Murray S, Lord S. The comparative ability of eight functional mobility tests for predicting falls in community-dwelling older people. Age Ageing 2008;37(4):430–5. doi: afn100[pii]https://doi.org/10.1093/ageing/afn100

    Article  PubMed  Google Scholar 

  7. Guralnik JM, Ferrucci L, Pieper CF, Leveille SG, Markides KS, Ostir GV, Studenski S, Berkman LF, Wallace RB. Lower extremity function and subsequent disability: consistency across studies, predictive models, and value of gait speed alone compared with the short physical performance battery. J Gerontol A Biol Sci Med Sci 2000;55(4):M221–31.

    Article  CAS  PubMed  Google Scholar 

  8. Cesari, M., Kritchevsky, S. B., Penninx, B. W., Nicklas, B. J., Simonsick, E. M., Newman, A. B., Tylavsky, F. A., Brach, J. S., Satterfield, S., Bauer, D. C., Visser, M., Rubin, S. M., Harris, T. B., & Pahor, M. Prognostic value of usual gait speed in well-functioning older people—results from the Health, Aging and Body Composition Study. J Am Geriatr Soc 2005;53(10):1675–80. doi:https://doi.org/10.1111/j.1532-5415.2005.53501.x

    Article  PubMed  Google Scholar 

  9. Cesari, M., Kritchevsky, S. B., Newman, A. B., Simonsick, E. M., Harris, T. B., Penninx, B. W., Brach, J. S., Tylavsky, F. A., Satterfield, S., Bauer, D. C., Rubin, S. M., Visser, M., Pahor, M., & Health, Aging and Body Composition Study. Added value of physical performance measures in predicting adverse health-related events: results from the Health, Aging and Body Composition Study. J Am Geriatr Soc 2009;57(2):251–9. doi:https://doi.org/10.1111/j.1532-5415.2008.02126.x

    Article  PubMed  PubMed Central  Google Scholar 

  10. Onder G, Penninx BW, Ferrucci L, Fried LP, Guralnik JM, Pahor M. Measures of physical performance and risk for progressive and catastrophic disability: results from the Women’s Health and Aging Study. J Gerontol A Biol Sci Med Sci 2005;60(1):74–9. doi:https://doi.org/10.1093/gerona/60.1.74

    Article  PubMed  Google Scholar 

  11. Studenski S, Perera S, Wallace D, Chandler JM, Duncan PW, Rooney E, Fox M, Guralnik JM. Physical performance measures in the clinical setting. J Am Geriatr Soc 2003;51(3):314–22. doi:https://doi.org/10.1046/j.1532-5415.2003.51104.x

    Article  PubMed  Google Scholar 

  12. Simonsick EM, Newman AB, Visser M, Goodpaster B, Kritchevsky SB, Rubin S, Nevitt MC, Harris TB. Mobility limitation in self-described well-functioning older adults: importance of endurance walk testing. J Gerontol A Biol Sci Med Sci 2008;63(8):841–7. doi:https://doi.org/10.1093/gerona/63.8.841

    Article  PubMed  PubMed Central  Google Scholar 

  13. Shinkai S, Watanabe S, Kumagai S, Fujiwara Y, Amano H, Yoshida H, Ishizaki T, Yukawa H, Suzuki T, Shibata H. Walking speed as a good predictor for the onset of functional dependence in a Japanese rural community population. Age Ageing 2000;29(5):441–6.

    Article  CAS  PubMed  Google Scholar 

  14. Cummings SR, Studenski S, Ferrucci L. A diagnosis of dismobility—giving mobility clinical visibility: a Mobility Working Group recommendation. JAMA 2014;311(20):2061–2. doi:https://doi.org/10.1001/jama.2014.3033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Studenski, S., Perera, S., Patel, K., Rosano, C., Faulkner, K., Inzitari, M., Brach, J., Chandler, J., Cawthon, P., Connor, E. B., Nevitt, M., Visser, M., Kritchevsky, S., Badinelli, S., Harris, T., Newman, A. B., Cauley, J., Ferrucci, L., & Guralnik, J. Gait speed and survival in older adults. JAMA 2011;305(1):50–8. doi:https://doi.org/10.1001/jama.2010.1923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Montero-Odasso M, Schapira M, Soriano ER, Varela M, Kaplan R, Camera LA, Mayorga LM. Gait velocity as a single predictor of adverse events in healthy seniors aged 75 years and older. J Gerontol A Biol Sci Med Sci 2005;60(10):1304–9. doi:https://doi.org/10.1093/gerona/60.10.1304

    Article  PubMed  Google Scholar 

  17. Dargent-Molina P, Favier F, Grandjean H, Baudoin C, Schott AM, Hausherr E, Meunier PJ, Breart G. Fall-related factors and risk of hip fracture: the EPIDOS prospective study. Lancet 1996;348(9021):145–9. doi: S0140673696014407[pii]

    Article  CAS  PubMed  Google Scholar 

  18. Abellan van Kan G, Rolland Y, Gillette-Guyonnet S, Gardette V, Annweiler C, Beauchet O, Andrieu S, Vellas B. Gait speed, body composition, and dementia. The EPIDOS-Toulouse cohort. Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences 2012;67(4):425–32. doi:https://doi.org/10.1093/gerona/glr177

    Article  Google Scholar 

  19. Wang L, Larson EB, Bowen JD, van Belle G. Performance-based physical function and future dementia in older people. Arch Intern Med 2006;166(10): 1115–20. doi:https://doi.org/10.1001/archinte.166.10.1115

    Article  PubMed  Google Scholar 

  20. Shimada H, Suzuki T, Suzukawa M, Makizako H, Doi T, Yoshida D, Tsutsumimoto K, Anan Y, Uemura K, Ito T, Lee S, Park H. Performance-based assessments and demand for personal care in older Japanese people: a cross-sectional study. BMJ Open 2013;3(4):e002424. doi:https://doi.org/10.1136/bmjopen-2012-002424

    Article  PubMed  PubMed Central  Google Scholar 

  21. Goldberg A, Schepens S. Measurement error and minimum detectable change in 4-meter gait speed in older adults. Aging Clin Exp Res 2011;23(5–6):406–12. doi:https://doi.org/10.1007/BF03325236

    Article  PubMed  Google Scholar 

  22. Muir-Hunter SW, Wittwer JE. Dual-task testing to predict falls in community-dwelling older adults: a systematic review. Physiotherapy 2016;102(1):29–40. doi:https://doi.org/10.1016/j.physio.2015.04.011

    Article  CAS  PubMed  Google Scholar 

  23. Montero-Odasso, M. M., Sarquis-Adamson, Y., Speechley, M., Borrie, M. J., Hachinski, V. C., Wells, J., Riccio, P. M., Schapira, M., Sejdic, E., Camicioli, R. M., Bartha, R., McIlroy, W. E., & Muir-Hunter, S. Association of dual-task gait with incident dementia in mild cognitive impairment: results from the Gait and Brain Study. JAMA Neurol 2017;74(7):857–65. doi:https://doi.org/10.1001/jamaneurol.2017.0643

    Article  PubMed  PubMed Central  Google Scholar 

  24. Rosso AL, Verghese J, Metti AL, Boudreau RM, Aizenstein HJ, Kritchevsky S, Harris T, Yaffe K, Satterfield S, Studenski S, Rosano C. Slowing gait and risk for cognitive impairment: the hippocampus as a shared neural substrate. Neurology 2017;89(4):336–42. doi:https://doi.org/10.1212/WNL.0000000000004153

    Article  PubMed  PubMed Central  Google Scholar 

  25. Holtzer R, Epstein N, Mahoney JR, Izzetoglu M, Blumen HM. Neuroimaging of mobility in aging: a targeted review. J Gerontol A Biol Sci Med Sci 2014;69(11):1375–88. doi:https://doi.org/10.1093/gerona/glu052

    Article  PubMed  PubMed Central  Google Scholar 

  26. Rosso, A. L., Studenski, S. A., Chen, W. G., Aizenstein, H. J., Alexander, N. B., Bennett, D. A., Black, S. E., Camicioli, R., Carlson, M. C., Ferrucci, L., Guralnik, J. M., Hausdorff, J. M., Kaye, J., Launer, L. J., Lipsitz, L. A., Verghese, J., & Rosano, C. Aging, the central nervous system, and mobility. J Gerontol A Biol Sci Med Sci 2013;68(11):1379–86. doi:https://doi.org/10.1093/gerona/glt089

    Article  PubMed  PubMed Central  Google Scholar 

  27. Shimada H, Makizako H, Lee S, Doi T, Lee S, Tsutsumimoto K, Harada K, Hotta R, Bae S, Nakakubo S, Harada K, Suzuki T. Impact of cognitive frailty on daily activities in older persons. J Nutr Health Aging 2016;20(7):729–35. doi:https://doi.org/10.1007/s12603-016-0685-2

    Article  CAS  PubMed  Google Scholar 

  28. Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 1975;12(3):189–98. doi: 0022-3956(75)90026-6[pii]

    Article  CAS  PubMed  Google Scholar 

  29. National Institute for Health and Care Excellence: Alzheimer’s disease - donepezil, galantamine, rivastigmine and memantine (TA217). In: NICE technology appraisal guidance 2011.

  30. Shimada H, Tsutsumimoto K, Doi T, Lee S, Bae S, Nakakubo S, Makino K, Arai H. Effect of sarcopenia status on disability incidence among Japanese older adults. J Am Med Dir Assoc 2020. doi:https://doi.org/10.1016/j.jamda.2020.10.036

  31. Stuck AE, Walthert JM, Nikolaus T, Bula CJ, Hohmann C, Beck JC. Risk factors for functional status decline in community-living elderly people: a systematic literature review. Soc Sci Med 1999;48(4):445–69. doi: S0277953698003700[pii]

    Article  CAS  PubMed  Google Scholar 

  32. Ishizaki T, Watanabe S, Suzuki T, Shibata H, Haga H. Predictors for functional decline among nondisabled older Japanese living in a community during a 3-year follow-up. J Am Geriatr Soc 2000;48(11):1424–9.

    Article  CAS  PubMed  Google Scholar 

  33. Yesavage JA. Geriatric Depression Scale. Psychopharmacol Bull 1988;24(4):709–11.

    CAS  PubMed  Google Scholar 

  34. Shimada H, Makizako H, Doi T, Tsutsumimoto K, Suzuki T. Incidence of disability in frail older persons with or without slow walking speed. J Am Med Dir Assoc 2015. doi:https://doi.org/10.1016/j.jamda.2015.03.019

  35. Fukutomi E, Okumiya K, Wada T, Sakamoto R, Ishimoto Y, Kimura Y, Chen WL, Imai H, Kasahara Y, Fujisawa M, Otsuka K, Matsubayashi K. Relationships between each category of 25-item frailty risk assessment (Kihon Checklist) and newly certified older adults under Long-Term Care Insurance: a 24-month follow-up study in a rural community in Japan. Geriatr Gerontol Int 2014;15:864–71. doi:https://doi.org/10.1111/ggi.12360

    Article  PubMed  Google Scholar 

  36. Perkins NJ, Schisterman EF. The inconsistency of “optimal” cutpoints obtained using two criteria based on the receiver operating characteristic curve. Am J Epidemiol 2006;163(7):670–5. doi: kwj063[pii]https://doi.org/10.1093/aje/kwj063

    Article  PubMed  Google Scholar 

  37. Akinwande M, Dikko H, Samson A. Variance inflation factor: As a condition for the inclusion of suppressor variable(s) in regression analysis. Open J Stat 2015;5:754–67. doi:https://doi.org/10.4236/ojs.2015.57075.

    Article  Google Scholar 

  38. Rosano C, Snitz BE. Predicting dementia from decline in gait speed: are we there yet? J Am Geriatr Soc 2018;66(9):1659–60. doi:https://doi.org/10.1111/jgs.15368

    Article  PubMed  PubMed Central  Google Scholar 

  39. Seidler RD, Bernard JA, Burutolu TB, Fling BW, Gordon MT, Gwin JT, Kwak Y, Lipps DB. Motor control and aging: links to age-related brain structural, functional, and biochemical effects. Neurosci Biobehav Rev 2010;34(5):721–33. doi:https://doi.org/10.1016/j.neubiorev.2009.10.005

    Article  CAS  PubMed  Google Scholar 

  40. Menant JC, Sturnieks DL, Brodie MA, Smith ST, Lord SR. Visuospatial tasks affect locomotor control more than nonspatial tasks in older people. PLoS One 2014;9(10):e109802. doi:https://doi.org/10.1371/journal.pone.0109802

    Article  PubMed  PubMed Central  Google Scholar 

  41. Verghese J, Kuslansky G, Holtzer R, Katz M, Xue X, Buschke H, Pahor M. Walking while talking: effect of task prioritization in the elderly. Arch Phys Med Rehabil 2007;88(1):50–3. doi:https://doi.org/10.1016/j.apmr.2006.10.007

    Article  PubMed  PubMed Central  Google Scholar 

  42. Guralnik JM, Fried LP, Salive ME. Disability as a public health outcome in the aging population. Annu Rev Public Health 1996;17:25–46. doi:https://doi.org/10.1146/annurev.pu.17.050196.000325

    Article  CAS  PubMed  Google Scholar 

  43. Gill TM. Assessment of function and disability in longitudinal studies. J Am Geriatr Soc 2010;58 Suppl 2:S308–12. doi:https://doi.org/10.1111/j.1532-5415.2010.02914.x

    PubMed  PubMed Central  Google Scholar 

  44. Guralnik JM, Ferrucci L, Pieper CF, Leveille SG, Markides KS, Ostir GV, Studenski S, Berkman LF, Wallace RB. Lower extremity function and subsequent disability: consistency across studies, predictive models, and value of gait speed alone compared with the short physical performance battery. J Gerontol A Biol Sci Med Sci 2000;55(4):M221–31.

    Article  CAS  PubMed  Google Scholar 

  45. Park YH, Kim YM, Lee BH. An ankle proprioceptive control program improves balance, gait ability of chronic stroke patients. J Phys Ther Sci 2013;25(10):1321–4. doi:https://doi.org/10.1589/jpts.25.1321

    Article  PubMed  PubMed Central  Google Scholar 

  46. Bohannon RW. Comfortable and maximum walking speed of adults aged 20–79 years: reference values and determinants. Age Ageing 1997;26(1):15–9. doi:https://doi.org/10.1093/ageing/26.1.15

    Article  CAS  PubMed  Google Scholar 

  47. Woollacott MH, Tang PF. Balance control during walking in the older adult: research and its implications. Phys Ther 1997;77(6):646–60. doi:https://doi.org/10.1093/ptj/77.6.646

    Article  CAS  PubMed  Google Scholar 

  48. Fiser WM, Hays NP, Rogers SC, Kajkenova O, Williams AE, Evans CM, Evans WJ. Energetics of walking in elderly people: factors related to gait speed. J Gerontol A Biol Sci Med Sci 2010;65(12):1332–7. doi:https://doi.org/10.1093/gerona/glq137

    Article  PubMed  Google Scholar 

  49. Aartolahti E, Hakkinen A, Lonnroos E, Kautiainen H, Sulkava R, Hartikainen S. Relationship between functional vision and balance and mobility performance in community-dwelling older adults. Aging Clin Exp Res 2013;25(5):545–52. doi:https://doi.org/10.1007/s40520-013-0120-z

    Article  PubMed  Google Scholar 

  50. te VA, Savelsbergh GJ, Barela JA, van der Kamp J. Safety in road crossing of children with cerebral palsy. Acta Paediatr 2003;92(10):1197–204.

    Article  PubMed  Google Scholar 

  51. Persad CC, Jones JL, Ashton-Miller JA, Alexander NB, Giordani B. Executive function and gait in older adults with cognitive impairment. J Gerontol A Biol Sci Med Sci 2008;63(12):1350–5. doi:https://doi.org/10.1093/gerona/63.12.1350

    Article  PubMed  Google Scholar 

  52. Lemke MR, Wendorff T, Mieth B, Buhl K, Linnemann M. Spatiotemporal gait patterns during over ground locomotion in major depression compared with healthy controls. J Psychiatr Res 2000;34(4–5):277–83. doi:https://doi.org/10.1016/s0022-3956(00)00017-0

    Article  CAS  PubMed  Google Scholar 

  53. Fredman L, Hawkes WG, Black S, Bertrand RM, Magaziner J. Elderly patients with hip fracture with positive affect have better functional recovery over 2 years. J Am Geriatr Soc 2006;54(7):1074–81. doi:https://doi.org/10.1111/j.1532-5415.2006.00786.x

    Article  PubMed  Google Scholar 

  54. Langlois JA, Keyl PM, Guralnik JM, Foley DJ, Marottoli RA, Wallace RB. Characteristics of older pedestrians who have difficulty crossing the street. Am J Public Health 1997;87(3):393–7. doi:https://doi.org/10.2105/ajph.87.3.393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cesari, M., Kritchevsky, S. B., Newman, A. B., Simonsick, E. M., Harris, T. B., Penninx, B. W., Brach, J. S., Tylavsky, F. A., Satterfield, S., Bauer, D. C., Rubin, S. M., Visser, M., Pahor, M., & Health, Aging and Body Composition Study. Added value of physical performance measures in predicting adverse health-related events: results from the Health, Aging and Body Composition Study. J Am Geriatr Soc 2009;57(2):251–9. doi:https://doi.org/10.1111/j.1532-5415.2008.02126.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement: We would like to thank the Tokai City offices for assistance with participant recruitment. We are also grateful to Dr. Park Hyuntae, Dr. Hyuma Makizako, Dr. Daisuke Yoshida, Dr. Ryo Hotta, Mr. Yuya Anan, Dr. SungChul Lee, Dr. Kazuhiro Harada, Dr. Kazuki Uemura, Dr. Hideaki Ishii, Dr. Ippei Chiba, Mr. Yohei Shinkai, and Dr. Osamu Katayama for their contributions to data collection in this study.

Funding

Funding Sources: This work received financial support of the Research Funding for Longevity Sciences (2722, 2830) from the National Center for Geriatrics and Gerontology, Research and Development Grants (15dk0207019h0001, 18dk0110021h0003, 18le0110004h0002) of the Japan Agency for Medical Research and Development, Japan. No support was received from the industry. The funding source played no role in the study design or procedure; collection, management, analysis, or interpretation of the data; or preparation, review, or approval of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Author Contributions: HS planned the study concept and design, performed analysis and interpretation of data, wrote the first draft of the manuscript, and coordinated the review and editing process leading to the final manuscript. TD participated in the design of the study and wrote the paper. TD, KT, KM, and KH acquired the data and contributed to the editorial process and review of the manuscript. HA supervised the study, suggested several ideas that have been pursued in this research, and participated in the planning, editorial, and review processes that led to the final manuscript.

Corresponding author

Correspondence to Hiroyuki Shimada.

Ethics declarations

Statement of Ethics: Written informed consent was obtained from all participants before their inclusion in the study, and the ethics committee of the National Center for Geriatrics and Gerontology approved the study protocol (registration number: 1067-3).

Conflict of Interest Statement: The authors have no conflicts of interest to declare.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shimada, H., Doi, T., Tsutsumimoto, K. et al. Predictive Validity of Different Walking Measures to Identify the Incident Long-Term Care Needs in Older Adults. J Nutr Health Aging 27, 759–766 (2023). https://doi.org/10.1007/s12603-023-1978-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12603-023-1978-x

Key words

Navigation