Skip to main content
Log in

Molecular Analysis and Sex-specific Response of the Hepcidin Gene in Yellow Perch (Perca Flavescens) Following Lipopolysaccharide Challenge

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Hepcidin antimicrobial peptide (hamp) is active in teleosts against invading pathogens and plays important roles in the stress and immune responses of finfish. The response of hamp gene was studied in yellow perch (yp) (Perca flavescens) challenged with lipopolysaccharides to understand if this immunity response is sex-specifically different. The cloned hamp gene consists of an open-reading frame of 273 bp and encodes a deduced protein of 90 amino acids (a.a.), which includes a signal peptide of 24 a.a., a pro-domain of 40 a.a. and a mature peptide of 26 a.a. Yp hamp involves 8 cysteine residues with 4 disulfide bonds, and a protein with an internal alpha helix flanked with C- and N-terminal random coils was modeling predicted. RT-qPCR was used to analyze the relative abundances (RAs) of hamp mRNA in the livers of juvenile female and male yellow perch challenged with lipopolysaccharide. The expression levels of hamp were significantly elevated by 3 h (RA = 7.3) and then peaked by 6 h (RA = 29.4) post-treatment in females but the peak was delayed to 12 h (RA = 65.4) post-treatment in males. The peak mRNA level of challenged males was shown 7.6-fold higher than females. The post-treatment responses in both genders decreased to their lowest levels by 24 h and 48 h. Overall, female perch had an earlier but less-sensitive response to the lipopolysaccharide challenge than male.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data Availability

Raw data were generated at USDA-ARS in School of Freshwater Sciences of University of Wisconsin in Milwaukee. Derived data supporting the finding of this study are available from the corresponding author, Dr. Yuehchiang Han, on request.

Abbreviations

Hamp:

Hepcidin antimicrobial peptide

Yp:

Yellow perch

A.a.:

Amino acids

RA:

Relative abundance

AMPs:

Antimicrobial peptides

LPS:

Lipopolysaccharide

RT-qPCR:

Quantitative real-time poly chain reaction

Eflα:

Elongation factor 1 alpha

UPGMA:

Unweighted pair group method with arithmetic means

WAG:

Whelan and Goldman

ANOVA:

Analysis of variance

REML:

Restricted maximum likelihood

CDS:

Coding sequence

ORF:

Open-reading frame

MSA:

Multiple sequence alignment

SOCS:

Suppressors of cytokine signaling

EDC:

Endocrine disruption chemical

References

  1. Masso-Silva JA, Diamond G (2014) Antimicrobial peptides from fish Pharmaceuticals 7:265–310. https://doi.org/10.3390/ph7030265

    Article  CAS  Google Scholar 

  2. Katzenback BA (2015) Antimicrobial peptides as mediators of innate immunity in teleosts. Biology (Basel) 4:607–639. https://doi.org/10.3390/biology4040607

    Article  CAS  PubMed  Google Scholar 

  3. Park CH, Valore EV, Waring AJ, Ganz T (2001) Hepcidin, a Urinary Antimicrobial Peptide Synthesized in the Liver. J Biol Chem 276:7806–7810. https://doi.org/10.1074/jbc.M008922200

    Article  CAS  PubMed  Google Scholar 

  4. Verga Falzacappa MV, Muckenthaler MU (2005) Hepcidin: iron-hormone and anti-microbial peptide. Gene 364:37–44. https://doi.org/10.1016/j.gene.2005.07.020

  5. Kim CH, Kim EJ, Nam YK (2019) Chondrostean sturgeon hepcidin: An evolutionary link between teleost and tetrapod hepcidins. Fish Shellfish Immunol 88:117–125. https://doi.org/10.1016/j.fsi.2019.02.045

    Article  CAS  PubMed  Google Scholar 

  6. Neves JV, Caldas C, Vieira I et al (2015) Multiple Hepcidins in a Teleost Fish, Dicentrarchus labrax : Different Hepcidins for Different Roles. J Immunol 195:2696–2709. https://doi.org/10.4049/jimmunol.1501153

    Article  CAS  PubMed  Google Scholar 

  7. Shike H, Lauth X, Westerman ME et al (2002) Bass hepcidin is a novel antimicrobial peptide induced by bacterial challenge. Eur J Biochem 269:2232–2237. https://doi.org/10.1046/j.1432-1033.2002.02881.x

    Article  CAS  PubMed  Google Scholar 

  8. Liang T, Ji W, Zhang GR et al (2013) Molecular cloning and expression analysis of liver-expressed antimicrobial peptide 1 (LEAP-1) and LEAP-2 genes in the blunt snout bream (Megalobrama amblycephala). Fish Shellfish Immunol 35:553–563. https://doi.org/10.1016/j.fsi.2013.05.021

    Article  CAS  PubMed  Google Scholar 

  9. Tao Y, Zhao D-M, Wen Y (2014) Expression, purification and antibacterial activity of the channel catfish hepcidin mature peptide. Protein Expr Purif 94:73–78. https://doi.org/10.1016/j.pep.2013.11.001

  10. Li H, Zhang F, Guo H et al (2013) Molecular characterization of hepcidin gene in common carp (Cyprinus carpio L.) and its expression pattern responding to bacterial challenge. Fish Shellfish Immunol 35:1030–1038. https://doi.org/10.1016/j.fsi.2013.07.001

    Article  CAS  PubMed  Google Scholar 

  11. Srinivasulu B, Syvitski R, Seo J-K et al (2008) Expression, purification and structural characterization of recombinant hepcidin, an antimicrobial peptide identified in Japanese flounder, Paralichthys olivaceus. Protein Expr Purif 61:36–44. https://doi.org/10.1016/j.pep.2008.05.012

  12. Barnes AC, Trewin B, Snape N et al (2011) Two hepcidin-like antimicrobial peptides in Barramundi Lates calcarifer exhibit differing tissue tropism and are induced in response to lipopolysaccharide. Fish Shellfish Immunol 31:350–357. https://doi.org/10.1016/j.fsi.2011.05.027

    Article  CAS  PubMed  Google Scholar 

  13. Cuesta A, Meseguer J, Esteban MÁ (2008) The antimicrobial peptide hepcidin exerts an important role in the innate immunity against bacteria in the bony fish gilthead seabream. Mol Immunol 45:2333–2342. https://doi.org/10.1016/j.molimm.2007.11.007

  14. Wang Y-D, Kung C-W, Chen J-Y (2010) Antiviral activity by fish antimicrobial peptides of epinecidin-1 and hepcidin 1–5 against nervous necrosis virus in medaka. Peptides 31:1026–1033. https://doi.org/10.1016/j.peptides.2010.02.025

  15. Chen J, Shi YH, Li MY (2008) Changes in transferrin and hepcidin genes expression in the liver of the fish Pseudosciaena crocea following exposure to cadmium. Arch Toxicol 82:525–530. https://doi.org/10.1007/s00204-008-0297-7

    Article  CAS  PubMed  Google Scholar 

  16. Nam YK, Cho YS, Lee SY et al (2011) Molecular characterization of hepcidin gene from mud loach (Misgurnus mizolepis; Cypriniformes). Fish Shellfish Immunol 31:1251–1258. https://doi.org/10.1016/j.fsi.2011.09.007

    Article  CAS  PubMed  Google Scholar 

  17. Neves JV, Caldas C, Ramos MF, Rodrigues PNS (2016) Hepcidin-dependent regulation of erythropoiesis during anemia in a teleost fish, dicentrarchus labrax. PLoS ONE 11:1–17. https://doi.org/10.1371/journal.pone.0153940

    Article  CAS  Google Scholar 

  18. Cheng AC, Lin HL, Shiu YL et al (2017) Isolation and characterization of antimicrobial peptides derived from Bacillus subtilis E20-fermented soybean meal and its use for preventing Vibrio infection in shrimp aquaculture. Fish Shellfish Immunol 67:270–279. https://doi.org/10.1016/j.fsi.2017.06.006

    Article  CAS  PubMed  Google Scholar 

  19. Ting CH, Pan CY, Chen YC et al (2019) Impact of Tilapia hepcidin 2–3 dietary supplementation on the gut microbiota profile and immunomodulation in the grouper (Epinephelus lanceolatus). Sci Rep 9:1–17. https://doi.org/10.1038/s41598-019-55509-9

    Article  CAS  Google Scholar 

  20. Tseng CC, Chu TW, Danata RH et al (2020) Hepcidin-expressing fish eggs as a novel food supplement to modulate immunity against pathogenic infection in zebrafish (danio rerio). Sustain. https://doi.org/10.3390/SU12104057

    Article  Google Scholar 

  21. Sepulveda-Villet OJ, Ford AM, Williams JD, Stepien CA (2009) Population genetic diversity and phylogeographic divergence patterns of the yellow perch (Perca flavescens). J Great Lakes Res 35:107–119. https://doi.org/10.1016/j.jglr.2008.11.009

    Article  Google Scholar 

  22. Lauer T (2015) Fishery of the Laurentian Great Lakes. 134–150

  23. Malison JA (2000) A white paper on the status and needs of yellow perch aquaculture in the north central region

  24. Rosauer DR, Biga PR, Lindell SR et al (2011) Development of yellow perch (Perca flavescens) broodstocks: Initial characterization of growth and quality traits following grow-out of different stocks. Aquaculture 317:58–66. https://doi.org/10.1016/j.aquaculture.2011.03.037

  25. Brazo DC, Tack PI, Liston CR (1975) Age, Growth, and Fecundity of Yellow Perch, Perca flavescens, in Lake Michigan near Ludington, Michigan. Trans Am Fish Soc 104:726–730. https://doi.org/10.1577/1548-8659(1975)104%3c726:AGAFOY%3e2.0.CO;2

    Article  Google Scholar 

  26. Goetz FW, Rise ML, Rise M et al (2009) Stimulation of growth and changes in the hepatic transcriptome by 17β-estradiol in the yellow perch (Perca flavescens). Physiol Genomics 38:261–280. https://doi.org/10.1152/physiolgenomics.00069.2009

    Article  CAS  PubMed  Google Scholar 

  27. Lynn SG, Powell KA, Westneat DF, Shepherd BS (2009) Seasonal and sex-specific mRNA levels of key endocrine genes in adult yellow perch (Perca flavescens) from Lake Erie. Mar Biotechnol (NY) 11:210–222. https://doi.org/10.1007/s10126-008-9136-3

    Article  CAS  PubMed  Google Scholar 

  28. Malison JA, Best CD, Kayes TB et al (1985) Hormonal Growth Promotion and Evidence for a Size-Related Difference in Response to Estradiol-17β in Yellow Perch (Perca flavescens). Can J Fish Aquat Sci 42:1627–1633. https://doi.org/10.1139/f85-203

    Article  CAS  Google Scholar 

  29. Schott, E.F. TBK and HEC (1978) Comparative growth of male versus female yellow perch fingerlings under controlled environmental conditions.versus female yellow perch fingerlings under controlled environmental conditions., In Selecte. American Fisheries Society, Washington, D.C

  30. Shepherd BS, Rees CB, Binkowski FP, Goetz FW (2012) Characterization and evaluation of sex-specific expression of suppressors of cytokine signaling (SOCS)-1 and -3 in juvenile yellow perch (Perca flavescens) treated with lipopolysaccharide. Fish Shellfish Immunol 33:468–481. https://doi.org/10.1016/j.fsi.2012.05.026

    Article  CAS  PubMed  Google Scholar 

  31. Rio DC, Ares MJ, Hannon GJ, Nilsen TW (2010) Purification of RNA using TRIzol (TRI reagent). Cold Spring Harb Protoc 2010:pdb.prot5439. https://doi.org/10.1101/pdb.prot5439

  32. Bustin SA, Benes V, Garson JA et al (2009) The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments. Clin Chem 55:611–622. https://doi.org/10.1373/clinchem.2008.112797

    Article  CAS  PubMed  Google Scholar 

  33. Clarke K, Gorley RN (2006) PRIMER v6: user manual/tutorial. PRIMER-E, Plymouth 29:1060–1065

    Google Scholar 

  34. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45. https://doi.org/10.1093/nar/29.9.e45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Madeira F, Pearce M, Tivey ARN et al (2022) Search and sequence analysis tools services from EMBL-EBI in 2022. Nucleic Acids Res gkac240. https://doi.org/10.1093/nar/gkac240

  36. Almagro Armenteros JJ, Tsirigos KD, Sønderby CK et al (2019) SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat Biotechnol 37:420–423. https://doi.org/10.1038/s41587-019-0036-z

    Article  CAS  PubMed  Google Scholar 

  37. Whelan S, Goldman N (2001) A General Empirical Model of Protein Evolution Derived from Multiple Protein Families Using a Maximum-Likelihood Approach. Mol Biol Evol 18:691–699. https://doi.org/10.1093/oxfordjournals.molbev.a003851

    Article  CAS  PubMed  Google Scholar 

  38. Yang J, Yan R, Roy A et al (2015) The I-TASSER Suite: protein structure and function prediction. Nat Methods 12:7–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ferrè F, Clote P (2005) DiANNA: a web server for disulfide connectivity prediction. Nucleic Acids Res 33:W230–W232. https://doi.org/10.1093/nar/gki412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Andersen CL, Jensen JL, Ørntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64:5245–5250. https://doi.org/10.1158/0008-5472.CAN-04-0496

    Article  CAS  PubMed  Google Scholar 

  41. Vandesompele J, De Preter K, Pattyn F et al (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:Research 0034. https://doi.org/10.1186/gb-2002-3-7-research0034

  42. Gonçalves MAD, Bello NM, Dritz SS et al (2016) An update on modeling dose-response relationships: Accounting for correlated data structure and heterogeneous error variance in linear and nonlinear mixed models. J Anim Sci 94:1940–1950. https://doi.org/10.2527/jas.2015-0106

    Article  PubMed  Google Scholar 

  43. Stroup WW, Milliken GA, Claassen EA, A, Wolfinger RD, (2018) SAS® for Mixed Models: Introduction and Basic Applications. SAS Institute Inc., Cary, NC, USA

    Google Scholar 

  44. Feron R, Zahm M, Cabau C et al (2020) Characterization of a Y-specific duplication/insertion of the anti-Mullerian hormone type II receptor gene based on a chromosome-scale genome assembly of yellow perch, Perca flavescens. Mol Ecol Resour 20:531–543. https://doi.org/10.1111/1755-0998.13133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Huang T, Gu W, Wang B et al (2019) Identification and expression of the hepcidin gene from brown trout (Salmo trutta) and functional analysis of its synthetic peptide. Fish Shellfish Immunol 87:243–253. https://doi.org/10.1016/j.fsi.2019.01.020

  46. Mohapatra A, Dixit A, Garg LC, Sahoo PK (2019) Hepcidin gene of Indian major carp, Labeo rohita: Molecular, structural and functional characterization, and antibacterial activity of recombinant hepcidin. Aquaculture 511:734218. https://doi.org/10.1016/j.aquaculture.2019.734218

  47. Huang P-H, Chen J-Y, Kuo C-M (2007) Three different hepcidins from tilapia, Oreochromis mossambicus: Analysis of their expressions and biological functions. Mol Immunol 44:1922–1934. https://doi.org/10.1016/j.molimm.2006.09.031

  48. Xu G, Huang T, Gu W et al (2018) Characterization, expression, and functional analysis of the hepcidin gene from Brachymystax lenok. Dev Comp Immunol 89:131–140. https://doi.org/10.1016/j.dci.2018.08.013

    Article  CAS  PubMed  Google Scholar 

  49. Wang K-J, Cai J-J, Cai L et al (2009) Cloning and expression of a hepcidin gene from a marine fish (Pseudosciaena crocea) and the antimicrobial activity of its synthetic peptide. Peptides 30:638–646. https://doi.org/10.1016/j.peptides.2008.12.014

    Article  CAS  PubMed  Google Scholar 

  50. Bhargava A, Arnold AP, Bangasser DA et al (2021) Considering Sex as a Biological Variable in Basic and Clinical Studies: An Endocrine Society Scientific Statement. Endocr Rev 42:219–258. https://doi.org/10.1210/endrev/bnaa034

    Article  PubMed  PubMed Central  Google Scholar 

  51. Campbell JH, Dixon B, Whitehouse LM (2021) The intersection of stress, sex and immunity in fishes. Immunogenetics 73:111–129. https://doi.org/10.1007/s00251-020-01194-2

    Article  PubMed  Google Scholar 

  52. Yang J, He J, Liu L et al (2022) Expression profiles of antimicrobial peptides in Mytilus coruscus. Aquaculture 548:737709. https://doi.org/10.1016/j.aquaculture.2021.737709

    Article  CAS  Google Scholar 

  53. Hinch SG, Bett NN, Eliason EJ et al (2021) Exceptionally high mortality of adult female salmon: a large-scale pattern and a conservation concern. Can J Fish Aquat Sci 78:639–654. https://doi.org/10.1139/cjfas-2020-0385

    Article  Google Scholar 

  54. Tokarz J, Möller G, Hrabě de Angelis M, Adamski J (2015) Steroids in teleost fishes: A functional point of view. Steroids 103:123–144. https://doi.org/10.1016/j.steroids.2015.06.011

  55. Wan ZY, Lin VCL, Hua YG (2021) Pomc Plays an Important Role in Sexual Size Dimorphism in Tilapia. Mar Biotechnol (NY) 23:201–214. https://doi.org/10.1007/s10126-020-10015-2

    Article  CAS  PubMed  Google Scholar 

  56. Shepherd BS, Rees CB, Sepulveda-Villet OJ et al (2013) Identification of Gender in Yellow Perch by External Morphology: Validation in Four Geographic Strains and Effects of Estradiol. N Am J Aquac 75:361–372. https://doi.org/10.1080/15222055.2013.783520

    Article  Google Scholar 

  57. Robertson LS, Iwanowicz LR, Marranca JM (2009) Identification of centrarchid hepcidins and evidence that 17beta-estradiol disrupts constitutive expression of hepcidin-1 and inducible expression of hepcidin-2 in largemouth bass (Micropterus salmoides). Fish Shellfish Immunol 26:898–907. https://doi.org/10.1016/j.fsi.2009.03.023

    Article  CAS  PubMed  Google Scholar 

  58. Qiu W, Shen Y, Pan C et al (2016) The potential immune modulatory effect of chronic bisphenol A exposure on gene regulation in male medaka (Oryzias latipes) liver. Ecotoxicol Environ Saf 130:146–154. https://doi.org/10.1016/j.ecoenv.2016.04.015

    Article  CAS  PubMed  Google Scholar 

  59. Burgos-Aceves MA, Cohen A, Smith Y, Faggio C (2016) Estrogen regulation of gene expression in the teleost fish immune system. Fish Shellfish Immunol 58:42–49. https://doi.org/10.1016/j.fsi.2016.09.006

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by USDA-ARS in-house project numbers 5090-31320-004-00D, 5090-31320-005-00D and 8001-88888-002-00D, and in part by an appointment of Y.-C.H. to the Research Participation Program at the Oak Ridge Institute of Science and Education (ORISE) through an interagency agreement between the US Department of Energy and the USDA. ORISE is managed by Oak Ridge Associated Universities (ORAU) under DOE contract DE-AC05-06OR23100. Partial support was granted from the funding (contract #019585F) awarded to Dong-Fang Deng by North Center Regional Aquaculture Center, USDA-NIFA. Xing Lu was supported by the China Scholarship Council as a visiting scientist (No. 201803260002). The views contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the US Government. Mention of trade name, proprietary product, or specific equipment does not constitute a guarantee or warranty by the USDA and does not imply its approval to the exclusion of other products that may be suitable. This manuscript is submitted for publication with the understanding that the US Government is authorized to reproduce and distribute reprints for governmental purposes. The USDA is an equal opportunity employee.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to experimental design and review and approval of submitted manuscript. Study conceptualization, D.F.D., X.L., & B.S.S. Cloning & sequencing, X.L. & B.S.S. RT-qPCR analysis, Y.-C.H., X.L., & Y.X. Bioinformatics analyses & structural modeling, Y.-C.H. & X.L. Statistical analysis, B.T.V. & Y.-C.H. Writing & editing manuscript, Y.-C.H., X.L., D.F.D., & B.S.S.

Corresponding author

Correspondence to Yueh-Chiang Han.

Ethics declarations

Ethics Approval

No animals were used for this specific study, but rather, tissue samples from a study that was previously approved by the University of Wisconsin at Milwaukee Animal Care and Use Committee.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1699 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, X., Han, YC., Shepherd, B.S. et al. Molecular Analysis and Sex-specific Response of the Hepcidin Gene in Yellow Perch (Perca Flavescens) Following Lipopolysaccharide Challenge. Probiotics & Antimicro. Prot. 15, 215–225 (2023). https://doi.org/10.1007/s12602-022-10024-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-022-10024-8

Keywords

Navigation