Skip to main content
Log in

Determination of Differentially Expressed Genes Involved in Arabinoxylan Degradation by Bifidobacterium longum NCC2705 Using Real-Time RT-PCR

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Real-time quantitative PCR (qRT-PCR) can be used to monitor specific catabolic activity by gene transcriptional analysis of bacterial cultures. This methodology has been applied to determine if the differential expression of genes putatively involved in arabinoxylan degradation by Bifidobacterium longum NCC2705 could be associated to the consumption of this prebiotic. Three genes putatively encoding arabinofuranosidases (abfI, abfA, and abfB) and one putatively encoding endoxylanase (xynD) were targeted for this purpose. Bifidobacterium longum NCC2705 exhibited higher growth yield relative to glucose based on viable counts or optical density for arabinoxylan as compared to xylose and arabinose. Among reference genes studied (16S rRNA, tufA, recA, rpoB, and atpD) the most stably expressed genes were rpoB, tufA, and atpD. The most significant increase in target gene expression was observed in the presence of arabinoxylan for the xynD gene, while xylose and arabinose had a weaker effect on xynD expression. In conclusion, B. longum NCC2705 overexpresses an endoxylanase gene in response to arabinoxylan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Blaut M (2002) Relationship of prebiotics and food to intestinal microflora. Eur J Nutr 41(suppl 1):I11–I16

    PubMed  Google Scholar 

  2. Bouhnik Y, Raskine L, Simoneau G, Vicaut E, Neut C, Flourie B, Brouns F, Bornet FR (2004) The capacity of nondigestible carbohydrates to stimulate fecal bifidobacteria in healthy humans: a double-blind, randomized, placebo-controlled, parallel-group, dose-response relation study. Am J Clin Nutr 80:1658–1664

    CAS  PubMed  Google Scholar 

  3. Crittenden R, Karppinen S, Ojanen S, Tenkanen M, Fagerstrom R, Matto J, Saarela M, Mattila-Sandholm T, Poutanen K (2002) In vitro fermentation of cereal dietary fibre carbohydrates by probiotic and intestinal bacteria. J Sci Food Agric 82:781–789

    Article  CAS  Google Scholar 

  4. Dervilly-Pinel G, Thibault JF, Saulnier L (2001) Experimental evidence for a semi-flexible conformation for arabinoxylans. Carbohydr Res 330:365–372

    Article  CAS  PubMed  Google Scholar 

  5. Dervilly G, Saulnier L, Roger P, Thibault JF (2000) Isolation of homogeneous fractions from wheat water-soluble arabinoxylans. Influence of the structure on their macromolecular characteristics. J Agric Food Chem 48:270–278

    Article  CAS  PubMed  Google Scholar 

  6. Deutscher MP (2006) Degradation of RNA in bacteria: comparison of mRNA and stable RNA. Nucleic Acids Res 34:659–666

    Article  CAS  PubMed  Google Scholar 

  7. Gosalbes MJ, Perez-Gonzalez JA, Gonzalez R, Navarro A (1991) Two beta-glycanase genes are clustered in Bacillus polymyxa: molecular cloning, expression, and sequence analysis of genes encoding a xylanase and an endo-beta-(1,3)-(1,4)-glucanase. J Bacteriol 173:7705–7710

    CAS  PubMed  Google Scholar 

  8. Gueimonde M, Noriega L, Margolles A, de Los Reyes-Gavilan CG (2006) Induction of alpha-l-arabinofuranosidase activity by monomeric carbohydrates in Bifidobacterium longum and ubiquity of encoding genes. Arch Microbiol 187:145–153

    Article  PubMed  Google Scholar 

  9. Hopkins MJ, Englyst HN, Macfarlane S, Furrie E, Macfarlane GT, McBain AJ (2003) Degradation of cross-linked and non-cross-linked arabinoxylans by the intestinal microbiota in children. Appl Environ Microbiol 69:6354–6360

    Article  CAS  PubMed  Google Scholar 

  10. Karppinen S, Liukkonen K, Aura A-M, Forssell P, Poutanen K (2000) In vitro fermentation of polysaccharides of rye, wheat and oat brans and inulin by human faecal bacteria. J Sci Food Agric 80:1469–1476

    Article  CAS  Google Scholar 

  11. Lagaert S, Van Campenhout S, Pollet A, Bourgois TM, Delcour JA, Courtin CM, Volckaert G (2007) Recombinant expression and characterization of a reducing-end xylose-releasing exo-oligoxylanase from Bifidobacterium adolescentis. Appl Environ Microbiol 73:5374–5377

    Article  CAS  PubMed  Google Scholar 

  12. Marco ML, Kleerebezem M (2008) Assessment of real-time RT-PCR for quantification of Lactobacillus plantarum gene expression during stationary phase and nutrient starvation. J Appl Microbiol 104:587–594

    CAS  PubMed  Google Scholar 

  13. Margolles A, de los Reyes-Gavilan CG (2003) Purification and functional characterization of a novel alpha-l-arabinofuranosidase from Bifidobacterium longum B667. Appl Environ Microbiol 69:5096–5103

    Article  CAS  PubMed  Google Scholar 

  14. Martínez-Bustos F, Martínez-Flores HE, Sanmartín-Martínez E (2001) Effect of the components of maize on the quality of masa and tortillas during the traditional nixtamalization process. J Sci Food Agric 81:1455–1462

    Article  Google Scholar 

  15. Matsuo N, Kaneko S, Kuno A, Kobayashi H, et Kusakabe I (2000) Purification, characterization and gene cloning of two alpha-l-arabinofuranosidases from Streptomyces chartreusis GS901. Biochem J 346(Pt 1):9–15

    Article  CAS  PubMed  Google Scholar 

  16. Nomura M, Gourse R, Bauhhman G (1984) Regulation of the synthesis of ribosomes and ribosomal components. Annu Rev Biochem 53:75–117

    Article  CAS  PubMed  Google Scholar 

  17. Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30:e36

    Article  PubMed  Google Scholar 

  18. Pitson SM, Voragen AG, Beldman G (1996) Stereochemical course of hydrolysis catalyzed by arabinofuranosyl hydrolases. FEBS Lett 398:7–11

    Article  CAS  PubMed  Google Scholar 

  19. Roberfroid MB (1998) Prebiotics and synbiotics: concepts and nutritional properties. Br J Nutr 80:S197–S202

    CAS  PubMed  Google Scholar 

  20. Saha BC (2000) Alpha-l-arabinofuranosidases: biochemistry, molecular biology and application in biotechnology. Biotechnol Adv 18:403–423

    Article  CAS  PubMed  Google Scholar 

  21. Schell MA, Karmirantzou M, Snel B, Vilanova D, Berger B, Pessi G, Zwahlen MC, Desiere F, Bork P, Delley M, Pridmore RD, Arigoni F (2002) The genome sequence of Bifidobacterium longum reflects its adaptation to the human gastrointestinal tract. Proc Natl Acad Sci USA 99:14422–14427

    Article  CAS  PubMed  Google Scholar 

  22. Shin HY, Park SY, Sung JH, Kim DH (2003) Purification and characterization of alpha-l-arabinopyranosidase and alpha-l-arabinofuranosidase from Bifidobacterium breve K-110, a human intestinal anaerobic bacterium metabolizing ginsenoside Rb2 and Rc. Appl Environ Microbiol 69:7116–7123

    Article  CAS  PubMed  Google Scholar 

  23. Sonnenburg JL, Chen CT, Gordon JI (2006) Genomic and metabolic studies of the impact of probiotics on a model gut symbiont and host. PLoS Biol 4:e413

    Article  PubMed  Google Scholar 

  24. Thellin O, Zorzi W, Lakaye B, De Borman B, Coumans B, Hennen G, Grisar T, Igout A, Heinen E (1999) Housekeeping genes as internal standards: use and limits. J Biotechnol 75:291–295

    Article  CAS  PubMed  Google Scholar 

  25. van den Broek LA, Lloyd RM, Beldman G, Verdoes JC, McCleary BV, Voragen AG (2005) Cloning and characterization of arabinoxylan arabinofuranohydrolase-D3 (AXHd3) from Bifidobacterium adolescentis DSM20083. Appl Microbiol Biotechnol 67:641–647

    Article  PubMed  Google Scholar 

  26. van den Broek LAM, Hinz SWA, Beldman G, Vincken J-P, Voragen AGJ (2008) Bifidobacterium carbohydrases: their role in breakdown and synthesis of (potential) prebiotics. Mol Nutr Food Res 52:146–163

    Article  PubMed  Google Scholar 

  27. Van Laere KM, Beldman G, Voragen AG (1997) A new arabinofuranohydrolase from Bifidobacterium adolescentis able to remove arabinosyl residues from double-substituted xylose units in arabinoxylan. Appl Microbiol Biotechnol 47:231–235

    Article  PubMed  Google Scholar 

  28. Van Laere KMJ, Voragen AGJ, Kroef T, Van den Broek LAM, Beldman G, Voragen AGJ (1999) Purification and mode of action of two different arabinoxylan arabinofuranohydrolases from Bifidobacterium adolescentis DSM-20083. Appl Microbiol Biotechnol 51:606–613

    Article  Google Scholar 

  29. Van Laere KM, Hartemink R, Bosveld M, Schols HA, Voragen AG (2000) Fermentation of plant cell wall derived polysaccharides and their corresponding oligosaccharides by intestinal bacteria. J Agric Food Chem 48:1644–1652

    Article  PubMed  Google Scholar 

  30. Vandecasteele SJ, Peetermans WE, Merckx R, Van Eldere J (2001) Quantification of expression of Staphylococcus epidermidis housekeeping genes with Taqman quantitative PCR during in vitro growth and under different conditions. J Bacteriol 183:7094–7101

    Article  CAS  PubMed  Google Scholar 

  31. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3: RESEARCH0034.1–0034.12

    Google Scholar 

  32. Vincent D, Roy D, Mondou F, Dery C (1998) Characterization of bifidobacteria by random DNA amplification. Int J Food Microbiol 43:185–193

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This project was funded by the Natural Sciences and Engineering Research Council of Canada (NSERC) grant and the Government of Canada (via a Canada Research Chair in Lactic Culture Biotechnology for Dairy and Probiotic Industries (Dr. Roy)). Patricia Savard was funded by a NSERC fellowship for her MSc thesis. The authors thank Dr. Gisèle LaPointe, Dr. Bassirou Ndoye and Eric Rasolofo for their scientific advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis Roy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Savard, P., Roy, D. Determination of Differentially Expressed Genes Involved in Arabinoxylan Degradation by Bifidobacterium longum NCC2705 Using Real-Time RT-PCR. Probiotics & Antimicro. Prot. 1, 121–129 (2009). https://doi.org/10.1007/s12602-009-9015-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-009-9015-x

Keywords

Navigation