Skip to main content

Advertisement

Log in

Graphene oxide-derived single-atom catalysts for electrochemical energy conversion

  • Review
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Sustainable electrochemical energy conversion is considered as a promising solution to energy crises and environmental issues. Owing to their maximized utilization efficiency and excellent catalytic performance, single-atom catalysts (SACs) have obtained tremendous attention in the field of electrochemical energy conversion. In the last few years, graphene oxide (GO) has been considered to be a promising precursor for fabricating graphene-supported SACs due to its advantageous features such as large surface area, high density of intrinsic defects, and scalability. In this review, the recent advances in the preparation of graphene oxide-derived single-atom catalysts (GO-SACs) and their diverse electrochemical applications are summarized. Firstly, the synthetic strategies of GO-SACs are discussed with focuses on the advantages and shortages of each method. Subsequently, the electrochemical applications of GO-SACs in various energy conversion processes, including the oxygen reduction reaction (ORR), oxygen evolution reaction (OER), hydrogen evolution reaction (HER), nitrogen reduction reaction (NRR), and carbon dioxide reduction reaction (CO2RR), are discussed in detail. Finally, the remaining challenges and future prospects in the fabrication and application of GO-SACs are presented.

Table of contents

摘要

可持续的电化学能量转换被认为是解决能源危机和环境问题的理想方案。单原子催化剂由于其最大的原子利用率和优异的催化性能, 在电化学能量转换领域引起了极大的关注。在过去的几年中, 氧化石墨烯由于其具有大表面积、高密度的本征缺陷和可大批量制备等优点, 被认为是制备石墨烯负载单原子催化剂的重要前驱体。此综述中, 我们总结了氧化石墨烯衍生的单原子催化剂的制备及其各种电化学应用的最新进展。首先, 讨论了氧化石墨烯衍生的单原子催化剂的合成策略, 重点介绍了每种方法的优缺点。随后, 介绍了该类催化剂在各种能量转换过程中的电化学应用, 包括氧还原反应、析氧反应、析氢反应、氮还原反应和二氧化碳还原反应等。最后, 我们总结了该类催化剂在制备和应用中面临的挑战和具有的前景。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Copyright 2013, Nature Publishing Group. b Schematic illustration of single-atom Pd1/graphene catalyst synthesis; c low-magnification HAADF-STEM images of Pd1/graphene; d high-magnification HAADF-STEM images of Pd1/graphene, where atomically dispersed Pd atoms are highlighted by white circles. Reproduced with permission Ref. [66]. Copyright 2015, American Chemical Society

Fig. 3

Reproduced with permission from Ref. [70]. Copyright 2017, American Chemical Society. b Preparation route to synthesize various monodispersed atomic metals embedded in 3D holey graphene frameworks. Reproduced with permission from Ref. [79]. Copyright 2018, Nature Publishing Group. c Schematic illustration showing that FePc molecules supported on 3D hollow graphene nanospheres facilitated formation of Fe single atoms. Reproduced with permission from Ref. [81]. Copyright 2018, Wiley–VCH. d Schematic illustration of synthesis process of Fe–N/GNs, which used GO-supported Fe/ZIF-8 as precursors. Reproduced with permission from Ref. [82]. Copyright 2020, Wiley–VCH

Fig. 4

Reproduced with permission from Ref. [87]. Copyright 2018, Wiley–VCH

Fig. 5

Reproduced with permission from Ref. [88]. Copyright 2018, Royal Society of Chemistry. c Schematic illustration of preparation of Co2+/GO hybrids; d EXAFS-FT analysis of Co2+/GO (blue), CoCO3 (red), and metallic cobalt (black). Reproduced with permission from Ref. [89]. Copyright 2017, American Chemical Society

Fig. 6

Reproduced with permission from Ref. [71]. Copyright 2019, American Chemical Society

Fig. 7

Reproduced with permission from Ref. [51]. Copyright 2015, Nature Publishing Group. e EXAFS-FT spectra of Co-SAC; f LSV curves of Ni-SAC, W-SAC Co-SAC for HER along with control sample of metal-free NG; g scheme of orbital hybridization of catalysts active sites with hydrogen (σ = bonding and σ* = antibonding state orbital); h Gibbs free energy (ΔGH*) diagram for hydrogen adsorption step (Volmer reaction) for a series of transition metals-based SACs. Reproduced with permission from Ref. [110]. Copyright 2019, Wiley–VCH

Fig. 8

Reproduced with permission from Ref. [82]. Copyright 2020, Wiley–VCH. d EXAFS-FT spectra of CoNG-350 and reference samples; e ORR polarization curves of CoNG-350 at rotation speed of 1600 r·min−1 with the scan rate of 5 mV·s−1; f discharge polarization curves and corresponding power density of CoNG-350 and Pt/C, respectively, in primary Zn-air batteries. Reproduced with permission from Ref. [93]. Copyright 2019, The Royal Society of Chemistry. g HAADF-STEM image of Sc@NG; h polarization curves of Sc@NG-750 and control samples at a rotation speed of 1600 r·min−1 in 0.1 mol·L−1 KOH; i K-L plots of Sc@NG-750 measured using a RDE in O2-saturated 0.1 mol·L−1 KOH. Reproduced with permission from Ref. [76]. Copyright 2019, Elsevier Ltd

Fig. 9

Reproduced with permission from Ref. [120]. Copyright 2019, American Chemical Society. b Schematic diagram of synthesis route for Co1–NG(O); c deconvoluted O 1s spectra of Co1–NG(O) and Co1–NG(R); d comparison of ORR performance at 1,600 r·min−1 (solid lines) and simultaneous H2O2 detection current densities at ring electrode (dashed lines) for NG(O), Co1–NG(O) and Co1–NG(R) in 0.1 mol·L−1 KOH; e calculated H2O2 selectivity as a function of applied potential; f mass activity at 0.65 V (vs. RHE); g chronoamperometry stability test of Co1–NG(O). Reproduced with permission from Ref. [96]. Copyright 2020, Nature Publishing Group. h Schematic illustration of synthesis of Ni-SA/G; i RRDE measurements of Ni-SA/G and control samples at 1600 r·min−1 under 10 mV·s−1; j electron transfer number (n) and H2O2 selectivity of Ni-SA/G and control samples. Reproduced with permission from Ref. [97]. Copyright 2020, American Chemical Society

Fig. 10

Reproduced with permission from Ref. [77]. Copyright 2018, Nature Publishing Group. d HAADF-STEM of Ni-NHGF, Co-NHGF and Fe-NHGF with scale bars: 5 nm (A), 2 nm (B), 0.5 nm (C–E); e OER polarization curves of Ni-NHGF along with control samples; f Tafel plots for Ni-NHGF and control samples. Reproduced with permission from Ref. [79]. Copyright 2018, Nature Publishing Group

Fig. 11

Reproduced with permission from Ref. [75]. Copyright 2018, The Royal Society of Chemistry. f HAADF-STEM images of Fe/NG-750 catalyst; g LSV curves of Fe/NG-750 catalyst on glassy carbon electrodes in Ar- or CO2-saturated 0.1 mol·L−1 KHCO3; h potential- dependent FE of CO for electrochemical CO2 reduction on Fe/NG catalysts prepared at different annealing temperatures; i partial current densities of CO on Fe/NG catalysts derived by corresponding potential-dependent FE data. Reproduced with permission from Ref. [78]. Copyright 2018, Wiley–VCH

Fig. 12

Reproduced with permission from Ref. [102]. Copyright 2021, Wiley–VCH

Similar content being viewed by others

References

  1. Debe MK. Electrocatalyst approaches and challenges for automotive fuel cells. Nature. 2012;486(7401):43.

    CAS  Google Scholar 

  2. Seh ZW, Kibsgaard J, Dickens CF, Chorkendorff I, Nørskov JK, Jaramillo TF. Combining theory and experiment in electrocatalysis: insights into materials design. Science. 2017;355(6321):4998.

    Google Scholar 

  3. Zhao Q, Yan Z, Chen C, Chen J. Spinels: controlled preparation, oxygen reduction/evolution reaction application, and beyond. Chem Rev. 2017;117(15):10121.

    CAS  Google Scholar 

  4. Wang ZL, Xu D, Xu JJ, Zhang XB. Oxygen electrocatalysts in metal-air batteries: from aqueous to nonaqueous electrolytes. Chem Soc Rev. 2014;43(22):7746.

    CAS  Google Scholar 

  5. Yang L, Zeng X, Wang W, Cao D. Recent progress in MOF-derived, heteroatom-doped porous carbons as highly efficient electrocatalysts for oxygen reduction reaction in fuel cells. Adv Funct Mater. 2018;28(7):1704537.

    Google Scholar 

  6. Wang Y, Han P, Lv X, Zhang L, Zheng G. Defect and interface engineering for aqueous electrocatalytic CO2 reduction. Joule. 2018;2(12):2551.

    CAS  Google Scholar 

  7. Jiao Y, Zheng Y, Davey K, Qiao SZ. Activity origin and catalyst design principles for electrocatalytic hydrogen evolution on heteroatom-doped graphene. Nat Energy. 2016;1(10):16130.

    CAS  Google Scholar 

  8. Wu B, Zheng N. Surface and interface control of noble metal nanocrystals for catalytic and electrocatalytic applications. Nano Today. 2013;8(2):168.

    Google Scholar 

  9. Sun T, Mitchell S, Li J, Lyu P, Wu X, Perez-Ramirez J, Lu J. Design of local atomic environments in single-atom electrocatalysts for renewable energy conversions. Adv Mater. 2021;33:2003075.

    CAS  Google Scholar 

  10. Wang X, Li Z, Qu Y, Yuan T, Wang W, Wu Y, Li Y. Review of metal catalysts for oxygen reduction reaction: from nanoscale engineering to atomic design. Chem. 2019;5(6):1486.

    CAS  Google Scholar 

  11. Qin R, Liu K, Wu Q, Zheng N. Surface coordination chemistry of atomically dispersed metal catalysts. Chem Rev. 2020;120(21):11810.

    CAS  Google Scholar 

  12. Wu G, Zelenay P. Nanostructured nonprecious metal catalysts for oxygen reduction reaction. Acc Chem Res. 2013;46(8):1878.

    CAS  Google Scholar 

  13. Zhang F, Zhu Y, Lin Q, Zhang L, Zhang X, Wang H. Noble-metal single-atoms in thermocatalysis, electrocatalysis, and photocatalysis. Energy Environ Sci. 2021;14(5):2954.

    CAS  Google Scholar 

  14. Franco F, Rettenmaier C, Jeon HS, Roldan CB. Transition metal-based catalysts for the electrochemical CO2 reduction: from atoms and molecules to nanostructured materials. Chem Soc Rev. 2020;49(19):6884.

    CAS  Google Scholar 

  15. Yang H, Han X, Douka AI, Huang L, Gong L, Xia C, Park HS, Xia BY. Advanced oxygen electrocatalysis in energy conversion and storage. Adv Funct Mater. 2021;31(12):2007602.

    CAS  Google Scholar 

  16. Zhao Y, Wang X, Cheng G, Luo W. Phosphorus-induced activation of ruthenium for boosting hydrogen oxidation and evolution electrocatalysis. ACS Catal. 2020;10(20):11751.

    CAS  Google Scholar 

  17. Liu Y, Deng Q, Li Y, Li Y, Zhong W, Hu J, Ji X, Yang C, Lin Z, Huang K. CoSe@N-doped carbon nanotubes as a potassium-ion battery anode with high initial coulombic efficiency and superior capacity retention. ACS Nano. 2021;15(1):1121.

    CAS  Google Scholar 

  18. Men Y, Tan Y, Li P, Cao X, Jia S, Wang J, Chen S, Luo W. Tailoring the 3d-orbital electron filling degree of metal center to boost alkaline hydrogen evolution electrocatalysis. Appl Catal B: Environ. 2021;284:119718.

    CAS  Google Scholar 

  19. Shi Y, Zhang B. Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction. Chem Soc Rev. 2016;45(6):1529.

    CAS  Google Scholar 

  20. Wei ZX, Zhu YT, Liu JY, Zhang ZC, Hu WP, Xu H, Feng YZ, Ma JM. Recent advance in single-atom catalysis. Rare Met. 2021;40(4):767.

    CAS  Google Scholar 

  21. Lu LY, Yu LN, Xu XG, Jiang Y. Monodisperse magnetic metallic nanoparticles: synthesis, performance enhancement, and advanced applications. Rare Met. 2013;32(4):323.

    CAS  Google Scholar 

  22. Liu L, Corma A. Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem Rev. 2018;118(10):4981.

    CAS  Google Scholar 

  23. Fei H, Dong J, Chen D, Hu T, Duan X, Shakir I, Huang Y, Duan X. Single atom electrocatalysts supported on graphene or graphene-like carbons. Chem Soc Rev. 2019;48(20):5207.

    CAS  Google Scholar 

  24. Wang Y, Mao J, Meng X, Yu L, Deng D, Bao X. Catalysis with two-dimensional materials confining single atoms: concept, design, and applications. Chem Rev. 2019;119(3):1806.

    CAS  Google Scholar 

  25. Jeong H, Shin S, Lee H. Heterogeneous atomic catalysts overcoming the limitations of single-atom catalysts. ACS Nano. 2020;14(11):14355.

    Google Scholar 

  26. Yang X-F, Wang A, Qiao B, Li J, Liu J, Zhang T. Single-atom catalysts: a new frontier in heterogeneous catalysis. Acc Chem Res. 2013;46(8):1740.

    CAS  Google Scholar 

  27. Cui X, Li W, Ryabchuk P, Junge K, Beller M. Bridging homogeneous and heterogeneous catalysis by heterogeneous single-metal-site catalysts. Nat Catal. 2018;1(6):385.

    CAS  Google Scholar 

  28. Hu M, Zhang J, Zhu W, Chen Z, Gao X, Du X, Wan J, Zhou K, Chen C, Li Y. 50 ppm of Pd dispersed on Ni(OH)2 nanosheets catalyzing semi-hydrogenation of acetylene with high activity and selectivity. Nano Res. 2018;11(2):905.

    CAS  Google Scholar 

  29. Jones J, Xiong H, DeLaRiva AT, Peterson EJ, Pham H, Challa SR, Qi G, Oh S, Wiebenga MH, Pereira Hernández XI, Wang Y, Datye AK. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science. 2016;353(6295):150.

    CAS  Google Scholar 

  30. Zhu C, Fu S, Shi Q, Du D, Lin Y. Single-atom electrocatalysts. Angew Chem Int Ed. 2017;56(45):13944.

    CAS  Google Scholar 

  31. Long B, Tang Y, Li J. New mechanistic pathways for CO oxidation catalyzed by single-atom catalysts: supported and doped Au1/ThO2. Nano Res. 2016;9(12):3868.

    CAS  Google Scholar 

  32. Gawande MB, Fornasiero P, Zbořil R. Carbon-based single-atom catalysts for advanced applications. ACS Catal. 2020;10(3):2231.

    CAS  Google Scholar 

  33. Song Z, Zhang L, Doyle-Davis K, Fu X, Luo JL, Sun X. Recent advances in MOF-derived single atom catalysts for electrochemical applications. Adv Energy Mater. 2020;58:2001561.

    Google Scholar 

  34. Kweon DH, Okyay MS, Kim SJ, Jeon JP, Noh HJ, Park N, Mahmood J, Baek JB. Ruthenium anchored on carbon nanotube electrocatalyst for hydrogen production with enhanced faradaic efficiency. Nat Commun. 2020;11(1):1278.

    CAS  Google Scholar 

  35. Qi K, Cui X, Gu L, Yu S, Fan X, Luo M, Xu S, Li N, Zheng L, Zhang Q, Ma J, Gong Y, Lv F, Wang K, Huang H, Zhang W, Guo S, Zheng W, Liu P. Single-atom cobalt array bound to distorted 1T MoS2 with ensemble effect for hydrogen evolution catalysis. Nat Commun. 2019;10(1):5231.

    Google Scholar 

  36. Liu R, Fei HL, Ye GL. Recent advances in single metal atom-doped MoS2 as catalysts for hydrogen evolution reaction. Tungsten. 2020;2(2):147.

    Google Scholar 

  37. Qiao B, Wang A, Yang X, Allard LF, Jiang Z, Cui Y, Liu J, Li J, Zhang T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat Chem. 2011;3(8):634.

    CAS  Google Scholar 

  38. Yao S, Zhang X, Zhou W, Gao R, Xu W, Ye Y, Lin L, Wen X, Liu P, Chen B, Crumlin E, Guo J, Zuo Z, Li W, Xie J, Lu L, Kiely CJ, Gu L, Shi C, Rodriguez JA, Ma D. Atomic-layered Au clusters on α-MoC as catalysts for the low-temperature water-gas shift reaction. Science. 2017;357(6439):389.

    CAS  Google Scholar 

  39. Wan J, Chen W, Jia C, Zheng L, Dong J, Zheng X, Wang Y, Yan W, Chen C, Peng Q, Wang D, Li Y. Defect effects on TiO2 nanosheets: stabilizing single atomic site Au and promoting catalytic properties. Adv Mater. 2018;30(11):1705369.

    Google Scholar 

  40. Shi Z, Yang W, Gu Y, Liao T, Sun Z. Metal-nitrogen-doped carbon materials as highly efficient catalysts: progress and rational design. Adv Sci. 2020;7(15):2001069.

    CAS  Google Scholar 

  41. Zhang L, Wang Y, Niu Z, Chen J. Single atoms on graphene for energy storage and conversion. Small Methods. 2019;3(9):1800443.

    Google Scholar 

  42. Ren S, Yu Q, Yu X, Rong P, Jiang L, Jiang J. Graphene-supported metal single-atom catalysts: a concise review. Sci China Mater. 2020;63(6):903.

    CAS  Google Scholar 

  43. Zhuo HY, Zhang X, Liang JX, Yu Q, Xiao H, Li J. Theoretical understandings of graphene-based metal single-atom catalysts: stability and catalytic performance. Chem Rev. 2020;120(21):12315.

    CAS  Google Scholar 

  44. Brodie BC. Sur le poids atomique du graphite. Ann Chim Phys. 1860;59:466.

    Google Scholar 

  45. Yuan H, Ye J, Ye C, Yin S, Li J, Su K, Fang G, Wu Y, Zheng Y, Ge M, Tang R, Feng G, Qu Y, Zhu Y. Highly efficient preparation of graphite oxide without water enhanced oxidation. Chem Mater. 2021;33(5):1731.

    CAS  Google Scholar 

  46. Nishina Y, Eigler S. Chemical and electrochemical synthesis of graphene oxide-a generalized view. Nanoscale. 2020;12(24):12731.

    CAS  Google Scholar 

  47. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM. Improved synthesis of graphene oxide. ACS Nano. 2010;4(8):4806.

    CAS  Google Scholar 

  48. Erickson K, Erni R, Lee Z, Alem N, Gannett W, Zettl A. Determination of the local chemical structure of graphene oxide and reduced graphene oxide. Adv Mater. 2010;22(40):4467.

    CAS  Google Scholar 

  49. Choi S, Kim C, Suh JM, Jang HW. Reduced graphene oxide-based materials for electrochemical energy conversion reactions. Carbon Energy. 2019;1(1):85.

    CAS  Google Scholar 

  50. Georgakilas V, Tiwari JN, Kemp KC, Perman JA, Bourlinos AB, Kim KS, Zboril R. Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications. Chem Rev. 2016;116(9):5464.

    CAS  Google Scholar 

  51. Fei H, Dong J, Arellano-Jimenez MJ, Ye G, Dong Kim N, Samuel EL, Peng Z, Zhu Z, Qin F, Bao J, Yacaman MJ, Ajayan PM, Chen D, Tour JM. Atomic cobalt on nitrogen-doped graphene for hydrogen generation. Nat Commun. 2015;6:8668.

    CAS  Google Scholar 

  52. Cheng Y, Zhao S, Johannessen B, Veder JP, Saunders M, Rowles MR, Cheng M, Liu C, Chisholm MF, De Marco R, Cheng HM, Yang SZ, Jiang SP. Atomically dispersed transition metals on carbon nanotubes with ultrahigh loading for selective electrochemical carbon dioxide reduction. Adv Mater. 2018;30(13):1706287.

    Google Scholar 

  53. Smith AT, LaChance AM, Zeng S, Liu B, Sun L. Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites. Nano Mater. Sci. 2019;1(1):31.

    Google Scholar 

  54. Guo J, Huo J, Liu Y, Wu W, Wang Y, Wu M, Liu H, Wang G. Nitrogen-doped porous carbon supported nonprecious metal single-atom electrocatalysts: from synthesis to application. Small Methods. 2019;3(9):1900159.

    Google Scholar 

  55. Mohanty B, Jena BK, Basu S. Single atom on the 2D matrix: an emerging electrocatalyst for energy applications. ACS Omega. 2020;5(3):1287.

    CAS  Google Scholar 

  56. Lu B, Liu Q, Chen S. Electrocatalysis of single-atom sites: impacts of atomic coordination. ACS Catal. 2020;10(14):7584.

    CAS  Google Scholar 

  57. Kaiser SK, Chen Z, Faust Akl D, Mitchell S, Pérez-Ramírez J. Single-atom catalysts across the periodic table. Chem Rev. 2020;120(21):11703.

    CAS  Google Scholar 

  58. Zhao D, Zhuang Z, Cao X, Zhang C, Peng Q, Chen C, Li Y. Atomic site electrocatalysts for water splitting, oxygen reduction and selective oxidation. Chem Soc Rev. 2020;49(7):2215.

    CAS  Google Scholar 

  59. Zou L, Wei YS, Hou CC, Li C, Xu Q. Single-atom catalysts derived from metal-organic frameworks for electrochemical applications. Small. 2021;17(16):2004809.

    CAS  Google Scholar 

  60. Liu L, Niu Z, Zhang L, Chen X. Structural diversity of bulky graphene materials. Small. 2014;10(11):2200.

    CAS  Google Scholar 

  61. Qiu H-J, Ito Y, Cong W, Tan Y, Liu P, Hirata A, Fujita T, Tang Z, Chen M. Nanoporous graphene with single-atom nickel dopants: an efficient and stable catalyst for electrochemical hydrogen production. Angew Chem Int Ed. 2015;54(47):14031.

    CAS  Google Scholar 

  62. Johnson RW, Hultqvist A, Bent SF. A brief review of atomic layer deposition: from fundamentals to applications. Mater Today. 2014;17(5):236.

    CAS  Google Scholar 

  63. Zhang L, Banis MN, Sun X. Single-atom catalysts by the atomic layer deposition technique. Nat Sci Rev. 2018;5(5):628.

    CAS  Google Scholar 

  64. Zhang B, Qin Y. Interface tailoring of heterogeneous catalysts by atomic layer deposition. ACS Catal. 2018;8(11):10064.

    CAS  Google Scholar 

  65. Sun SH, Zhang GX, Gauquelin N, Chen N, Zhou JG, Yang SL, Chen WF, Meng XB, Geng DS, Banis MN, Li RY, Ye SY, Knights S, Botton GA, Sham TK, Sun XL. Single-atom catalysis using Pt/graphene achieved through atomic layer deposition. Sci Rep-Uk. 2013;3(1):1775.

    Google Scholar 

  66. Yan H, Cheng H, Yi H, Lin Y, Yao T, Wang C, Li J, Wei S, Lu J. Single-atom Pd(1)/graphene catalyst achieved by atomic layer deposition: remarkable performance in selective hydrogenation of 1,3-butadiene. J Am Chem Soc. 2015;137(33):10484.

    CAS  Google Scholar 

  67. Luo E, Chu Y, Liu J, Shi Z, Zhu S, Gong L, Ge J, Choi CH, Liu C, Xing W. Pyrolyzed M-Nx catalysts for oxygen reduction reaction: progress and prospects. Energy Environ Sci. 2021;14(4):2158.

    CAS  Google Scholar 

  68. Ji S, Chen Y, Wang X, Zhang Z, Wang D, Li Y. Chemical synthesis of single atomic site catalysts. Chem Rev. 2020;120(21):11900.

    CAS  Google Scholar 

  69. Jung JY, Hong YL, Kim JG, Kim MJ, Kim YK, Kim ND. New insight of tailor-made graphene oxide for the formation of atomic Co-N sites toward hydrogen evolution reaction. Appl Surf Sci. 2021;563:150254.

    CAS  Google Scholar 

  70. Zhang C, Sha J, Fei H, Liu M, Yazdi S, Zhang J, Zhong Q, Zou X, Zhao N, Yu H, Jiang Z, Ringe E, Yakobson BI, Dong J, Chen D, Tour JM. Single-atomic ruthenium catalytic sites on nitrogen-doped graphene for oxygen reduction reaction in acidic medium. ACS Nano. 2017;11(7):6930.

    CAS  Google Scholar 

  71. Qu Y, Chen B, Li Z, Duan X, Wang L, Lin Y, Yuan T, Zhou F, Hu Y, Yang Z, Zhao C, Wang J, Zhao C, Hu Y, Wu G, Zhang Q, Xu Q, Liu B, Gao P, You R, Huang W, Zheng L, Gu L, Wu Y, Li Y. Thermal emitting strategy to synthesize atomically dispersed Pt metal sites from bulk Pt metal. J Am Chem Soc. 2019;141(11):4505.

    CAS  Google Scholar 

  72. Jiang H, He Q, Wang C, Liu H, Zhang Y, Lin Y, Zheng X, Chen S, Ajayan PM, Song L. Definitive structural identification toward molecule-type sites within 1D and 2D carbon-based catalysts. Adv Energy Mater. 2018;8(19):1800436.

    Google Scholar 

  73. Zhai P, Wang T, Yang W, Cui S, Zhang P, Nie A, Zhang Q, Gong Y. Uniform lithium deposition assisted by single-atom doping toward high-performance lithium metal anodes. Adv Energy Mater 2019: 1804019.

  74. Jeong HY, Balamurugan M, Choutipalli VSK, Jo J, Baik H, Subramanian V, Kim M, Sim U, Nam KT. Tris(2-benzimidazolylmethyl)amine-directed synthesis of single-atom nickel catalysts for electrochemical CO production from CO2. Chem Eur J. 2018;24(69):18444.

    CAS  Google Scholar 

  75. Jiang K, Siahrostami S, Zheng T, Hu Y, Hwang S, Stavitski E, Peng Y, Dynes J, Gangisetty M, Su D, Attenkofer K, Wang H. Isolated Ni single atoms in graphene nanosheets for high-performance CO2 reduction. Energy Environ Sci. 2018;11(4):893.

    CAS  Google Scholar 

  76. Wen X, Duan Z, Bai L, Guan J. Atomic scandium and nitrogen-codoped graphene for oxygen reduction reaction. J Power Sources. 2019;431:265.

    CAS  Google Scholar 

  77. Guan J, Duan Z, Zhang F, Kelly SD, Si R, Dupuis M, Huang Q, Chen JQ, Tang C, Li C. Water oxidation on a mononuclear manganese heterogeneous catalyst. Nat Catal. 2018;1(11):870.

    CAS  Google Scholar 

  78. Zhang C, Yang S, Wu J, Liu M, Yazdi S, Ren M, Sha J, Zhong J, Nie K, Jalilov AS, Li Z, Li H, Yakobson BI, Wu Q, Ringe E, Xu H, Ajayan PM, Tour JM. Electrochemical CO2 reduction with atomic iron-dispersed on nitrogen-doped graphene. Adv Energy Mater. 2018;8(19):1703487.

    Google Scholar 

  79. Fei H, Dong J, Feng Y, Allen CS, Wan C, Volosskiy B, Li M, Zhao Z, Wang Y, Sun H, An P, Chen W, Guo Z, Lee C, Chen D, Shakir I, Liu M, Hu T, Li Y, Kirkland AI, Duan X, Huang Y. General synthesis and definitive structural identification of MN4N4 single-atom catalysts with tunable electrocatalytic activities. Nat Catal. 2018;1(1):63.

    CAS  Google Scholar 

  80. Hong M, Nie J, Zhang X, Zhang P, Meng Q, Huang J, Xu Z, Du C, Chen J. Facile solution synthesis of FeNx atom clusters supported on nitrogen-enriched graphene carbon aerogels with superb electrocatalytic performance toward the oxygen reduction reaction. J Mater Chem A. 2019;7(44):25557.

    CAS  Google Scholar 

  81. Qiu X, Yan X, Pang H, Wang J, Sun D, Wei S, Xu L, Tang Y. Isolated Fe single atomic sites anchored on highly steady hollow graphene nanospheres as an efficient electrocatalyst for the oxygen reduction reaction. Adv Sci. 2019;6(2):1801103.

    Google Scholar 

  82. Liu D, Li JC, Ding S, Lyu Z, Feng S, Tian H, Huyan C, Xu M, Li T, Du D, Liu P, Shao M, Lin Y. 2D single-atom catalyst with optimized iron sites produced by thermal melting of metal-organic frameworks for oxygen reduction reaction. Small Methods. 2020;4(6):1900827.

    CAS  Google Scholar 

  83. Wang X, Chen Z, Zhao X, Yao T, Chen W, You R, Zhao C, Wu G, Wang J, Huang W, Yang J, Hong X, Wei S, Wu Y, Li Y. Regulation of coordination number over single Co sites: triggering the efficient electroreduction of CO2. Angew Chem Int Ed. 2018;57(7):1944.

    CAS  Google Scholar 

  84. Zhu YJ, Chen F. Microwave-assisted preparation of inorganic nanostructures in liquid phase. Chem Rev. 2014;114(12):6462.

    CAS  Google Scholar 

  85. Liu R, Zhang Y, Ning Z, Xu Y. A catalytic microwave process for superfast preparation of high-quality reduced graphene oxide. Angew Chem Int Ed. 2017;56(49):15677.

    CAS  Google Scholar 

  86. Voiry D, Yang J, Kupferberg J, Fullon R, Lee C, Jeong HY, Shin HS, Chhowalla M. High-quality graphene via microwave reduction of solution-exfoliated graphene oxide. Science. 2016;353(6306):1413.

    CAS  Google Scholar 

  87. Fei H, Dong J, Wan C, Zhao Z, Xu X, Lin Z, Wang Y, Liu H, Zang K, Luo J, Zhao S, Hu W, Yan W, Shakir I, Huang Y, Duan X. Microwave-assisted rapid synthesis of graphene-supported single atomic metals. Adv Mater. 2018;30(35):1802146.

    Google Scholar 

  88. Huang J, Lu Q, Ma X, Yang X. Bio-inspired FeN5 moieties anchored on a three-dimensional graphene aerogel to improve oxygen reduction catalytic performance. J Mater Chem A. 2018;6(38):18488.

    CAS  Google Scholar 

  89. Wang J, Zhong W, Liu X, Yang T, Li F, Li Q, Cheng W, Gao C, Jiang Z, Jiang J, Cui H. Highly active graphene oxide-supported cobalt single-ion catalyst for chemiluminescence reaction. Anal Chem. 2017;89(24):13518.

    CAS  Google Scholar 

  90. Cheng N, Stambula S, Wang D, Banis MN, Liu J, Riese A, Xiao B, Li R, Sham TK, Liu LM, Botton GA, Sun X. Platinum single-atom and cluster catalysis of the hydrogen evolution reaction. Nat Commun. 2016;7:13638.

    CAS  Google Scholar 

  91. Fan X. O-coordinated W-Mo dual-atom catalyst for pH-universal electrocatalytic hydrogen evolution. Sci Adv. 2020;6(23):6586.

    Google Scholar 

  92. Zhang Q, Duan Z, Wang Y, Li L, Nan B, Guan J. Atomically dispersed iridium catalysts for multifunctional electrocatalysis. J Mater Chem A. 2020;8(37):19665.

    CAS  Google Scholar 

  93. Li J, Liu H, Wang M, Lin C, Yang W, Meng J, Xu Y, Owusu KA, Jiang B, Chen C, Fan D, Zhou L, Mai L. Boosting oxygen reduction activity with low-temperature derived high-loading atomic cobalt on nitrogen-doped graphene for efficient Zn-air batteries. Chem Commun. 2019;55(3):334.

    CAS  Google Scholar 

  94. Han G, Zheng Y, Zhang X, Wang Z, Gong Y, Du C, Banis MN, Yiu YM, Sham TK, Gu L, Sun Y, Wang Y, Wang J, Gao Y, Yin G, Sun X. High loading single-atom Cu dispersed on graphene for efficient oxygen reduction reaction. Nano Energy. 2019;66:104088.

    CAS  Google Scholar 

  95. Li W, Min C, Tan F, Li Z, Zhang B, Si R, Xu M, Liu W, Zhou L, Wei Q, Zhang Y, Yang X. Bottom-up construction of active sites in a Cu-N4-C catalyst for highly efficient oxygen reduction reaction. ACS Nano. 2019;13(3):3177.

    CAS  Google Scholar 

  96. Jung E, Shin H, Lee H, Efremov V, Lee S, Lee HS, Kim J, Hooch Antink W, Park S, Lee KS, Cho SP, Yoo JS, Sung YE, Hyeon T. Atomic-level tuning of Co–N–C catalyst for high-performance electrochemical H2O2 production. Nat Mater. 2020;19(4):436.

    CAS  Google Scholar 

  97. Song X, Li N, Zhang H, Wang L, Yan Y, Wang H, Wang L, Bian Z. Graphene-supported single nickel atom catalyst for highly selective and efficient hydrogen peroxide production. ACS Appl Mater Inter. 2020;12(15):17519.

    CAS  Google Scholar 

  98. Zhang Q, Duan Z, Li M, Guan J. Atomic cobalt catalysts for the oxygen evolution reaction. Chem Commun. 2020;56(5):794.

    CAS  Google Scholar 

  99. Pan F, Li B, Sarnello E, Fei Y, Feng X, Gang Y, Xiang X, Fang L, Li T, Hu YH, Wang G, Li Y. Pore-edge tailoring of single-atom iron-nitrogen sites on graphene for enhanced CO2 reduction. ACS Catal. 2020;10(19):10803.

    CAS  Google Scholar 

  100. Cheng Y, Zhao S, Li H, He S, Veder JP, Johannessen B, Xiao J, Lu S, Pan J, Chisholm MF, Yang SZ, Liu C, Chen JG, Jiang SP. Unsaturated edge-anchored Ni single atoms on porous microwave exfoliated graphene oxide for electrochemical CO2. Appl Catal B: Environ. 2019;243:294.

    CAS  Google Scholar 

  101. Zu X, Li X, Liu W, Sun Y, Xu J, Yao T, Yan W, Gao S, Wang C, Wei S, Xie Y. Efficient and robust carbon dioxide electroreduction enabled by atomically dispersed Snδ+ sites. Adv Mater. 2019;31(15):1808135.

    Google Scholar 

  102. Gu Y, Xi B, Tian W, Zhang H, Fu Q, Xiong S. Boosting selective nitrogen reduction via geometric coordination engineering on single-tungsten-atom catalysts. Adv Mater. 2021;33(25):e2100429.

    Google Scholar 

  103. Zou X, Zhang Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem Soc Rev. 2015;44(15):5148.

    CAS  Google Scholar 

  104. Cai J, Javed R, Ye D, Zhao H, Zhang J. Recent progress in noble metal nanocluster and single atom electrocatalysts for the hydrogen evolution reaction. J Mater Chem A. 2020;8(43):22467.

    CAS  Google Scholar 

  105. Liu D, Li X, Chen S, Yan H, Wang C, Wu C, Haleem YA, Duan S, Lu J, Ge B, Ajayan PM, Luo Y, Jiang J, Song L. Atomically dispersed platinum supported on curved carbon supports for efficient electrocatalytic hydrogen evolution. Nat Energy. 2019;4(6):512.

    CAS  Google Scholar 

  106. Ouyang T, Chen AN, He ZZ, Liu ZQ, Tong Y. Rational design of atomically dispersed nickel active sites in β-Mo2C for the hydrogen evolution reaction at all pH values. Chem Commun. 2018;54(71):9901.

    CAS  Google Scholar 

  107. Xue Y, Huang B, Yi Y, Guo Y, Zuo Z, Li Y, Jia Z, Liu H, Li Y. Anchoring zero valence single atoms of nickel and iron on graphdiyne for hydrogen evolution. Nat Commun. 2018;9(1):1460.

    Google Scholar 

  108. Chen W, Pei J, He CT, Wan J, Ren H, Zhu Y, Wang Y, Dong J, Tian S, Cheong WC, Lu S, Zheng L, Zheng X, Yan W, Zhuang Z, Chen C, Peng Q, Wang D, Li Y. Rational design of single molybdenum atoms anchored on N-doped carbon for effective hydrogen evolution reaction. Angew Chem Int Ed. 2017;56(50):16086.

    CAS  Google Scholar 

  109. Wan J, Zhao Z, Shang H, Peng B, Chen W, Pei J, Zheng L, Dong J, Cao R, Sarangi R, Jiang Z, Zhou D, Zhuang Z, Zhang J, Wang D, Li Y. In situ phosphatizing of triphenylphosphine encapsulated within metal-organic frameworks to design atomic Co1-P1N3 interfacial structure for promoting catalytic performance. J Am Chem Soc. 2020;142(18):8431.

    CAS  Google Scholar 

  110. Hossain MD, Liu Z, Zhuang M, Yan X, Xu GL, Gadre CA, Tyagi A, Abidi IH, Sun CJ, Wong H, Guda A, Hao Y, Pan X, Amine K, Luo Z. Rational design of graphene-supported single atom catalysts for hydrogen evolution reaction. Adv Energy Mater. 2019;9(10):1803689.

    Google Scholar 

  111. Chen Y, Ji S, Zhao S, Chen W, Dong J, Cheong WC, Shen R, Wen X, Zheng L, Rykov AI, Cai S, Tang H, Zhuang Z, Chen C, Peng Q, Wang D, Li Y. Enhanced oxygen reduction with single-atomic-site iron catalysts for a zinc-air battery and hydrogen-air fuel cell. Nat Commun. 2018;9(1):5422.

    CAS  Google Scholar 

  112. Wang DW, Su D. Heterogeneous nanocarbon materials for oxygen reduction reaction. Energy Environ Sci. 2014;7(2):576.

    Google Scholar 

  113. Morozan A, Jousselme B, Palacin S. Low-platinum and platinum-free catalysts for the oxygen reduction reaction at fuel cell cathodes. Energy Environ Sci. 2011;4(4):1238.

    CAS  Google Scholar 

  114. Wang D, Pan X, Yang P, Li R, Xu H, Li Y, Meng F, Zhang J, An M. Transition metal and nitrogen Co-doped carbon-based electrocatalysts for the oxygen reduction reaction: from active site insights to the rational design of precursors and structures. Chemsuschem. 2021;14:33.

    CAS  Google Scholar 

  115. Zhao CX, Li BQ, Liu JN, Zhang Q. Intrinsic electrocatalytic activity regulation of M-N-single-atom catalysts for the oxygen reduction reaction. Angew Chem Int Ed. 2021;60(9):4448.

    CAS  Google Scholar 

  116. Hu L, Li W, Wang L, Wang B. Turning metal-organic frameworks into efficient single-atom catalysts via pyrolysis with a focus on oxygen reduction reaction catalysts. Energy Chem. 2021;3(3):100056.

    CAS  Google Scholar 

  117. Yang S, Verdaguer-Casadevall A, Arnarson L, Silvioli L, Čolić V, Frydendal R, Rossmeisl J, Chorkendorff I, Stephens IEL. Toward the decentralized electrochemical production of H2O2: a focus on the catalysis. ACS Catal. 2018;8(5):4064.

    CAS  Google Scholar 

  118. Sun Y, Han L, Strasser P. A comparative perspective of electrochemical and photochemical approaches for catalytic H2O2 production. Chem Soc Rev. 2020;49(18):6605.

    CAS  Google Scholar 

  119. Jung E, Shin H, Hooch Antink W, Sung YE, Hyeon T. Recent advances in electrochemical oxygen reduction to H2O2: catalyst and cell design. ACS Energy Lett. 2020;5(6):1881.

    CAS  Google Scholar 

  120. Guo X, Lin S, Gu J, Zhang S, Chen Z, Huang S. Simultaneously achieving high activity and selectivity toward two-electron O2 electroreduction: the power of single-atom catalysts. ACS Catal. 2019;9(12):11042.

    CAS  Google Scholar 

  121. Perry SC, Pangotra D, Vieira L, Csepei LI, Sieber V, Wang L, Ponce de León C, Walsh FC. Electrochemical synthesis of hydrogen peroxide from water and oxygen. Nat Rev Chem. 2019;3(7):442.

    CAS  Google Scholar 

  122. Siahrostami S, Villegas SJ, Bagherzadeh Mostaghimi AH, Back S, Farimani AB, Wang H, Persson KA, Montoya J. A review on challenges and successes in atomic-scale design of catalysts for electrochemical synthesis of hydrogen peroxide. ACS Catal. 2020;10(14):7495.

    CAS  Google Scholar 

  123. Wang Y, Waterhouse GIN, Shang L, Zhang T. Electrocatalytic oxygen reduction to hydrogen peroxide: from homogenous to heterogenous electrocatalysis. Adv Energy Mater 2020: 2003323.

  124. Gao J, Hb Y, Huang X, Hung SF, Cai W, Jia C, Miao S, Chen HM, Yang X, Huang Y, Zhang T, Liu B. Enabling direct H2O2 production in acidic media through rational design of transition metal single atom catalyst. Chem. 2020;6(3):658.

    CAS  Google Scholar 

  125. Sun Y, Silvioli L, Sahraie NR, Ju W, Li J, Zitolo A, Li S, Bagger A, Arnarson L, Wang X, Moeller T, Bernsmeier D, Rossmeisl J, Jaouen F, Strasser P. Activity-selectivity trends in the electrochemical production of hydrogen peroxide over single-site metal-nitrogen-carbon catalysts. J Am Chem Soc. 2019;141(31):12372.

    CAS  Google Scholar 

  126. Jiang K, Back S, Akey AJ, Xia C, Hu Y, Liang W, Schaak D, Stavitski E, Norskov JK, Siahrostami S, Wang H. Highly selective oxygen reduction to hydrogen peroxide on transition metal single atom coordination. Nat Commun. 2019;10(1):3997.

    Google Scholar 

  127. Yao Y, Hu S, Chen W, Huang ZQ, Wei W, Yao T, Liu R, Zang K, Wang X, Wu G, Yuan W, Yuan T, Zhu B, Liu W, Li Z, He D, Xue Z, Wang Y, Zheng X, Dong J, Chang CR, Chen Y, Hong X, Luo J, Wei S, Li WX, Strasser P, Wu Y, Li Y. Engineering the electronic structure of single atom Ru sites via compressive strain boosts acidic water oxidation electrocatalysis. Nat Catal. 2019;2(4):304.

    CAS  Google Scholar 

  128. Cai C, Han S, Wang Q, Gu M. Direct observation of yolk–shell transforming to gold single atoms and clusters with superior oxygen evolution reaction efficiency. ACS Nano. 2019;13(8):8865.

    CAS  Google Scholar 

  129. Hou Y, Qiu M, Kim MG, Liu P, Nam G, Zhang T, Zhuang X, Yang B, Cho J, Chen M, Yuan C, Lei L, Feng X. Atomically dispersed nickel-nitrogen-sulfur species anchored on porous carbon nanosheets for efficient water oxidation. Nat Commun. 2019;10(1):1392.

    Google Scholar 

  130. Chen P, Zhou T, Xing L, Xu K, Tong Y, Xie H, Zhang L, Yan W, Chu W, Wu C, Xie Y. Atomically dispersed iron–nitrogen species as electrocatalysts for bifunctional oxygen evolution and reduction reactions. Angew Chem Int Ed. 2017;56(2):610.

    CAS  Google Scholar 

  131. Nguyen TN, Salehi M, Le QV, Seifitokaldani A, Dinh CT. Fundamentals of electrochemical CO2 reduction on single-metal-atom catalysts. ACS Catal. 2020;10(17):10068.

    Google Scholar 

  132. Aresta M, Dibenedetto A, Angelini A. Catalysis for the valorization of exhaust carbon: from CO2 to chemicals, materials, and fuels technological use of CO2. Chem Rev. 2014;114(3):1709.

    CAS  Google Scholar 

  133. Yang CH, Nosheen F, Zhang ZC. Recent progress in structural modulation of metal nanomaterials for electrocatalytic CO2 reduction. Rare Met. 2021;40(6):1412.

    CAS  Google Scholar 

  134. Ling Y, Ma Q, Yu Y, Zhang B. Optimization strategies for selective CO2 electroreduction to fuels. Trans Tianjin Univ. 2021;27(3):180.

    CAS  Google Scholar 

  135. Wang JJ, Li XP, Cui BF, Zhang Z, Hu XF, Ding J, Deng YD, Han XP, Hu WB. A review of non-noble metal-based electrocatalysts for CO2 electroreduction. Rare Met. 2021. https://doi.org/10.1007/s12598-021-01736-x.

    Article  Google Scholar 

  136. Wu ZZ, Gao FY, Gao MR. Regulating the oxidation state of nanomaterials for electrocatalytic CO2 reduction. Energy Environ Sci. 2021;14(3):1121.

    CAS  Google Scholar 

  137. Pan Y, Lin R, Chen Y, Liu S, Zhu W, Cao X, Chen W, Wu K, Cheong WC, Wang Y, Zheng L, Luo J, Lin Y, Liu Y, Liu C, Li J, Lu Q, Chen X, Wang D, Peng Q, Chen C, Li Y. Design of single-atom Co-N5 catalytic site: a robust electrocatalyst For CO2 reduction with nearly 100% CO selectivity and remarkable stability. J Am Chem Soc. 2018;140(12):4218.

    CAS  Google Scholar 

  138. Wang Y, Liu Y, Liu W, Wu J, Li Q, Feng Q, Chen Z, Xiong X, Wang D, Lei Y. Regulating the coordination structure of metal single atoms for efficient electrocatalytic CO2 reduction. Energy Environ Sci. 2020;13(12):4609.

    CAS  Google Scholar 

  139. Zhao C, Dai X, Yao T, Chen W, Wang X, Wang J, Yang J, Wei S, Wu Y, Li Y. Ionic exchange of metal–organic frameworks to access single nickel sites for efficient electroreduction of CO2. J Am Chem Soc. 2017;139(24):8078.

    CAS  Google Scholar 

  140. Foster SL, Bakovic SIP, Duda RD, Maheshwari S, Milton RD, Minteer SD, Janik MJ, Renner JN, Greenlee LF. Catalysts for nitrogen reduction to ammonia. Nat Catal. 2018;1(7):490.

    Google Scholar 

  141. Cui X, Tang C, Zhang Q. A review of electrocatalytic reduction of dinitrogen to ammonia under ambient conditions. Adv Energy Mater. 2018;8(22):1800369.

    Google Scholar 

  142. Wang Q, Lei Y, Wang D, Li Y. Defect engineering in earth-abundant electrocatalysts for CO2 and N2 reduction. Energy Environ Sci. 2019;12(6):1730.

    CAS  Google Scholar 

  143. Li M, Huang H, Low J, Gao C, Long R, Xiong Y. Recent progress on electrocatalyst and photocatalyst design for nitrogen reduction. Small Methods. 2019;3(6):1800388.

    Google Scholar 

  144. Shi MM, Bao D, Wulan BR, Li YH, Zhang YF, Yan JM, Jiang Q. Au sub-nanoclusters on TiO2 toward highly efficient and selective electrocatalyst for N2 conversion to NH3 at ambient conditions. Adv Mater. 2017;29(17):1606550.

    Google Scholar 

  145. Qiu W, Xie XY, Qiu J, Fang WH, Liang R, Ren X, Ji X, Cui G, Asiri AM, Cui G, Tang B, Sun X. High-performance artificial nitrogen fixation at ambient conditions using a metal-free electrocatalyst. Nat Commun. 2018;9(1):3485.

    Google Scholar 

  146. Guo C, Ran J, Vasileff A, Qiao SZ. Rational design of electrocatalysts and photo(electro)catalysts for nitrogen reduction to ammonia (NH3) under ambient conditions. Energy Environ Sci. 2018;11(1):45.

    CAS  Google Scholar 

  147. Geng Z, Liu Y, Kong X, Li P, Li K, Liu Z, Du J, Shu M, Si R, Zeng J. Achieving a record-high yield rate of 120.9 for N2 electrochemical reduction over Ru single-atom catalysts. Adv Mater. 2018;30(40):1803498.

    Google Scholar 

  148. Liu X, Jiao Y, Zheng Y, Jaroniec M, Qiao SZ. Building up a picture of the electrocatalytic nitrogen reduction activity of transition metal single-atom catalysts. J Am Chem Soc. 2019;141(24):9664.

    CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by National Natural Science Foundation of China (No. 51902099), Hunan High-Level Talent Gathering Project (No. 2019RS1021), the Fundamental Research Funds for the Central Universities (No. 531119200087) and the Natural Science Foundation of Hunan Province (No. 2020JJ4204).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gong-Lan Ye or Hui-Long Fei.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, JB., Gong, HS., Ye, GL. et al. Graphene oxide-derived single-atom catalysts for electrochemical energy conversion. Rare Met. 41, 1703–1726 (2022). https://doi.org/10.1007/s12598-021-01904-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-021-01904-z

Keywords

Navigation