Skip to main content

Graphene Oxide Based Electrochemical System for Energy Generation

  • Chapter
  • First Online:
Inorganic Nanosheets and Nanosheet-Based Materials

Abstract

Graphene oxide (GO) can be synthesized by easy method at low cost. GO possesses excellent mechanical strength, flexibility, and high surface area. Therefore, researcher worldwide are trying to adopt GO for various applications. GO has chemically different regions such as hydrophobic π-conjugated sp [2] domains with electric conduction and hydrophilic sp [3] domains with proton conduction. Moreover, the ratio of this region can be tuned easily through varying in the method and extent of reduction. Thus GO can be adopted for specific applications. GO has been applied in a wide range of electrochemical energy generating systems including fuel cells, supercapacitors, lithium-ion batteries, and so on. In fact, reduced GO (rGO) with high electric conductivity and surface area is suitable for electrodes, while GO with high proton conductivity and perfect gas barrier property is suitable for electrolyte. In this chapter, we describe about the basic properties and applications of this fascinating materials in electrochemical devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191. doi:10.1038/nmat1849

  2. Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240. doi:10.1039/b917103g

  3. Chien CT, Li SS, Lai WJ et al (2012) Tunable photoluminescence from graphene oxide. Angew Chem Int Ed 51:6662–6666. doi:10.1002/anie.201200474

  4. Eda G, Lin YY, Mattevi C et al (2010) Blue photoluminescence from chemically derived graphene oxide. Adv Mater 22: 505–+. doi:10.1002/adma.200901996

  5. Wang Y, Huang Y, Song Y et al (2009) Room-temperature ferromagnetism of graphene. Nano Lett 9:220–224: doi:10.1021/nl802810g

  6. Taniguchi T, Yokoi H, Nagamine M et al (2014) Correlated optical and magnetic properties in photoreduced graphene oxide. J Phys Chem C 118:28258–28265. doi:10.1021/jp509399x

  7. Taniguchi T, Tateishi H, Miyamoto S et al (2013) A self-assembly route to an iron phthalocyanine/reduced graphene oxide hybrid electrocatalyst affording an ultrafast oxygen reduction reaction. Part Part Syst Charact 30:1063–1070. doi:10.1002/ppsc.201300177

  8. Matsumoto Y, Koinuma M, Ida S et al (2011) Photoreaction of graphene oxide nanosheets in water. J Phys Chem C 115:19280–19286. doi:10.1021/jp206348s

  9. Joshi RK, Carbone P, Wang FC et al (2014) Precise and ultrafast molecular sieving through graphene oxide membranes. Science 343:752–754. doi:10.1126/science.1245711

  10. Li H, Song ZN, Zhang XJ et al (2013) Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen separation. Science 342:95–98. doi:10.1126/science.1236686

  11. Kim HW, Yoon HW, Yoon SM et al (2013) Selective gas transport through few-layered graphene and graphene oxide membranes. Science 342:91–95. doi:10.1126/science.1236098

  12. Stankovich S, Dikin DA, Piner RD et al (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565. doi:10.1016/j.carbon.2007.02.034

  13. Erickson K, Erni R, Lee Z et al (2010) Determination of the local chemical structure of graphene oxide and reduced graphene oxide. Adv Mater 22:4467–4472. doi:10.1002/adma.201000732

  14. Nair RR, Wu HA, Jayaram PN, Grigorieva IV, Geim AK (2012) Unimpeded permeation of water through helium-leak-tight graphene-based membranes. Science 335:442–444. doi:10.1126/science.1211694

  15. Nakada K, Fujita M, Dresselhaus G, Dresselhaus MS (1996) Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. Phys Rev B 54:17954–17961. doi:10.1103/PhysRevB.54.17954

  16. Koinuma M, Ogata C, Kamei Y et al (2012) Photochemical engineering of graphene oxide nanosheets. J Phys Chem C 116:19822–19827. doi:10.1021/jp305403r

  17. Hatakeyama K, Tateishi H, Taniguchi T et al (2014) Tunable graphene oxide proton/electron mixed conductor that functions at room temperature. Chem Mater 26:5598–5604. doi:10.1021/cm502098e

  18. Subrina S, Kotchetkov D (2008) Simulation of heat conduction in suspended graphene flakes of variable shapes. J Nanoelect Optoelect 3:249–269. doi:10.1166/jno.2008.303

  19. Mattevi C, Eda G, Agnoli S et al (2009) Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films. Adv Funct Mater 19:2577–2583. doi:10.1002/adfm.200900166

  20. Wang X, Zhi LJ, Mullen K (2008) Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett 8:323–327. doi:10.1021/nl072838r

  21. Lopez V, Sundaram RS, Gomez-Navarro C et al (2009) Chemical vapor deposition repair of graphene oxide: a route to highly conductive graphene monolayers. Adv Mater 21:4683–+. doi:10.1002/adma.200901582

  22. Wu ZS, Parvez K, Feng XL, Mullen K (2013) Graphene-based in-plane micro-supercapacitors with high power and energy densities. Nat Commun 4. doi:10.1038/ncomms3487

  23. Shin HJ, Kim KK, Benayad A et al (2009) Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv Func Mater 19:1987–1992. doi:10.1002/adfm.200900167

  24. Pei SF, Zhao JP, Du JH, Ren WC, Cheng HM (2010) Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon 48:4466–4474. doi:10.1016/j.carbon.2010.08.006

  25. Chen H, Muller MB, Gilmore KJ, Wallace GG, Li D (2008) Mechanically strong, electrically conductive, and biocompatible graphene paper. Adv Mater 20:3557–+. doi:10.1002/adma.200800757

  26. Williams G, Seger B, Kamat PV (2008) TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano 2:1487–1491. doi:10.1021/nn800251f

  27. Akhavan O (2011) Photocatalytic reduction of graphene oxides hybridized by ZnO nanoparticles in ethanol. Carbon 49:11–18. doi:10.1016/j.carbon.2010.08.030

  28. Matsumoto Y, Koinuma M, Kim SY et al (2010) Simple photoreduction of graphene oxide nanosheet under mild conditions. ACS Appl Mater Interfaces 2:3461–3466. doi:10.1021/am100900q

  29. Zhang YL, Guo L, Wei S et al (2010) Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction. Nano Today 5:15–20. doi:10.1016/j.nantod.2009.12.009

  30. Jin MH, Kim TH, Lim SC et al (2011) Facile physical route to highly crystalline graphene. Adv Funct Mater 21:3496–3501. doi:10.1002/adfm.201101037

  31. Kreuer KD (1996) Proton conductivity: materials and applications. Chem Mater 8:610–641. doi:10.1021/cm950192a

  32. Bose S, Kuila T, Thi XLN et al (2011) Polymer membranes for high temperature proton exchange membrane fuel cell: Recent advances and challenges. Prog Polym Sci 36:813–843. doi:10.1016/j.progpolymsci.2011.01.003

  33. Yang L, Tang J, Li L et al (2012) High quality pristine perfluorosulfonated ionomer membranes prepared from perfluorinated sulfonyl fluoride solution. RSC Adv 2:5950–5953. doi:10.1039/c2ra20318a

  34. Vilciauskas L, Tuckerman ME, Bester G, Paddison SJ, Kreuer K-D (2012) The mechanism of proton conduction in phosphoric acid. Nat Chem 4:461–466. doi:10.1038/nchem.1329

  35. Woundenberg RC, Yavuzcetin O, Tuominen MT, Coughlin EB (2007) Intrinsically proton conducting polymers and copolymers containing benzimidazole moieties: glass transition effects. Solid State Ion 178:1135–1141. doi:10.1016/j.ssi.2007.05.006

  36. McKeen JC, Yan YS, Davis ME (2008) Proton conductivity of acid-functionalized zeolite beta, MCM-41, and MCM-48: effect of acid strength. Chem Mater 20:5122–5124. doi:10.1021/cm801418r

  37. Kreuer KD (2001) On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells. J Membr Sci 185:29–39. doi:10.1016/s0376-7388(00)00632-3

  38. Gao W, Singh N, Song L et al (2011) Direct laser writing of micro-supercapacitors on hydrated graphite oxide films. Nat Nanotechnol 6:496–500. doi:10.1038/nnano.2011.110

  39. Karim MR, Hatakeyama K, Matsui T et al (2013) Graphene oxide nanosheet with high proton conductivity. J Am Chem Soc 135:8097–8100. doi:10.1021/ja401060q

  40. Hatakeyama K, Karim MR, Ogata C et al (2014) Proton conductivities of graphene oxide nanosheets: single, multilayer, and modified nanosheets. Angew Chem Int Ed 53:6997–7000. doi:10.1002/anie.201309931

  41. Zarrin H, Higgins D, Jun Y, Chen ZW, Fowler M (2011) Functionalized graphene oxide nanocomposite membrane for low humidity and high temperature proton exchange membrane fuel cells. J Phys Chem C 115:20774–20781. doi:10.1021/jp204610j

  42. Lee DC, Yang HN, Park SH, Kim WJ (2014) Nafion/graphene oxide composite membranes for low humidifying polymer electrolyte membrane fuel cell. J Membr Sci 452:20–28. doi:10.1016/j.memsci.2013.10.013

  43. Ravikumar, Scott K (2012) Freestanding sulfonated graphene oxide paper: a new polymer electrolyte for polymer electrolyte fuel cells. Chem Commun 48:5584–5586. doi:10.1039/c2cc31771k

  44. Hatakeyama K, Karim MR, Ogata C et al (2014) Optimization of proton conductivity in graphene oxide by filling sulfate ions. Chem Commun 50:14527–14530. doi:10.1039/c4cc07273a

  45. Tateishi H, Hatakeyama K, Ogata C et al (2013) Graphene oxide fuel cell. J Electrochem Soc 160:F1175-F1178. doi:10.1149/2.008311jes

  46. Gao W, Wu G, Janicke T et al (2014) Ozonated graphene oxide film as a proton-exchange membrane. Angew Chem Int Ed 53:3588–3593. doi:10.1002/anie.201310908

  47. Tripathi BP, Schieda M, Shahi VK, Nunes SP (2011) Nanostructured membranes and electrodes with sulfonic acid functionalized carbon nanotubes. J Power Sources 196:911–919. doi:10.1016/j.jpowsour.2010.08.110

  48. Rolison DR, Hagans PL, Swider KE, Long JW (1999) Role of hydrous ruthenium oxide in Pt-Ru direct methanol fuel cell anode electrocatalysts: the importance of mixed electron/proton conductivity. Langmuir 15:774–779. doi:10.1021/la9807863

  49. Escolastico S, Somacescu S, Serra JM (2014) Solid state transport and hydrogen permeation in the system Nd5.5W1-xRexO11.25-delta. Chem Mater 26:982–992. doi:10.1021/cm402821w

  50. Hatakeyama K, Islam MS, Michio K et al (2015) Super proton/electron mixed conduction in graphene oxide hybrids by intercalating sulfate ions. J Mater Chem A 3:20892–20895. doi:10.1039/c5ta05653e

  51. Kim S, Zhou S, Hu YK et al (2012) Room-temperature metastability of multilayer graphene oxide films. Nat Mater 11:544–549. doi:10.1038/nmat3316

  52. Morozan A, Jousselme B, Palacin S (2011) Low-platinum and platinum-free catalysts for the oxygen reduction reaction at fuel cell cathodes. Energy Environ Sci 4:1238–1254. doi:10.1039/c0ee00601g

  53. Lin ZY, Song MK, Ding Y et al (2012) Facile preparation of nitrogen-doped graphene as a metal-free catalyst for oxygen reduction reaction. Phys Chem Chem Phys 14:3381–3387. doi:10.1039/c2cp00032f

  54. Wang SY, Zhang LP, Xia ZH et al (2012) BCN graphene as efficient metal-free electrocatalyst for the oxygen reduction reaction. Angew Chem Int Ed 51:4209–4212. doi:10.1002/anie.201109257

  55. Liang YY, Li YG, Wang HL et al (2011) Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat Mater 10:780–786. doi:10.1038/nmat3087

  56. El-Kady MF, Strong V, Dubin S, Kaner RB (2012) Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335:1326–1330. doi:10.1126/science.1216744

  57. Stoller MD, Park SJ, Zhu YW, An JH, Ruoff RS (2008) Graphene-based ultracapacitors. Nano Lett 8:3498–3502. doi:10.1021/nl802558y

  58. Zhu YW, Murali S, Stoller MD et al (2011) Carbon-based supercapacitors produced by activation of graphene. Science 332:1537–1541. doi:10.1126/science.1200770

  59. Kim T, Jung G, Yoo S, Suh KS, Ruoff RS (2013) Activated graphene-based carbons as supercapacitor electrodes with macro- and mesopores. ACS Nano 7:6899–6905. doi:10.1021/nn402077v

  60. Miller JR, Outlaw RA, Holloway BC (2010) Graphene double-layer capacitor with ac line-filtering performance. Science 329:1637–1639. doi:10.1126/science.1194372

  61. Yoo JJ, Balakrishnan K, Huang JS et al (2011) Ultrathin planar graphene supercapacitors. Nano Lett 11:1423–1427. doi:10.1021/nl200225J

  62. Yoon Y, Lee K, Kwon S et al (2014) Vertical alignments of graphene sheets spatially and densely piled for fast ion diffusion in compact supercapacitors. ACS Nano 8:4580–4590. doi:10.1021/nn500150j

  63. Wu ZS, Winter A, Chen L et al (2012) Three-dimensional nitrogen and boron co-doped graphene for high-performance all-solid-state supercapacitors. Adv Mater 24:5130–5135. doi:10.1002/adma.201201948

  64. Wang HL, Casalongue HS, Liang YY, Dai HJ (2010) Ni(OH)2 Nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials. J Am Chem Soc 132:7472–7477. doi:10.1021/ja102267j

  65. Tateishi H, Koinuma M, Miyamoto S et al (2014) Effect of the electrochemical oxidation/reduction cycle on the electrochemical capacitance of graphite oxide. Carbon 76:40–45. doi:10.1016/j.carbon.2014.04.034

  66. El-Kady MF, Kaner RB (2013) Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. Nat Commun 4. doi:10.1038/ncomms2446

  67. Zhu XJ, Zhu YW, Murali S, Stollers MD, Ruoff RS (2011) Nanostructured reduced graphene oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries. ACS Nano 5:3333–3338. doi:10.1021/nn200493r

  68. Chang JB, Huang XK, Zhou GH et al (2014) Multilayered Si nanoparticle/reduced graphene oxide hybrid as a high-performance lithium-ion battery anode. Adv Mater 26:758–764. doi:10.1002/adma.201302757

  69. Li YM, Lv XJ, Lu J, Li JH (2010) Preparation of SnO2-nanocrystal/graphene-nanosheets composites and their lithium storage ability. J Phys Chem C 114:21770–21774. doi:10.1021/jp1050047

  70. Xin X, Zhou XF, Wu JH, Yao XY, Liu ZP (2012) Scalable synthesis of TiO2/Graphene nanostructured composite with high-rate performance for lithium ion batteries. ACS Nano 6:11035–11043. doi:10.1021/nn304725m

  71. Chang K, Chen WX (2011) L-Cysteine-assisted synthesis of layered MoS2/graphene composites with excellent electrochemical performances for lithium ion batteries. ACS Nano 5:4720–4728. doi:10.1021/nn200659w

  72. Zhou XF, Wang F, Zhu YM, Liu ZP (2011) Graphene modified LiFePO4 cathode materials for high power lithium ion batteries. J Mater Chem 21:3353–3358. doi:10.1039/c0jm03287e

  73. Qu BH, Ma CZ, Ji G et al (2014) Layered SnS2-reduced graphene oxide composite—a high-capacity, high-rate, and long-cycle life sodium-ion battery anode material. Adv Mater 26:3854–3859. doi:10.1002/adma.201306314

  74. Wang HL, Yang Y, Liang YY et al (2011) Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability. Nano Lett 11:2644–2647. doi:10.1021/nl200658a

  75. Tateishi H, Koga T, Hatakeyama K et al (2014) Graphene oxide lead battery (GOLB). ECS Electrochem Lett 3:A19-A21. doi:10.1149/2.002403ee1

  76. Huang JQ, Zhuang TZ, Zhang Q et al (2015) Permselective graphene oxide membrane for highly stable and anti-self-discharge lithium-sulfur batteries. ACS Nano 9:3002–3011. doi:10.1021/nn507178a

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasumichi Matsumoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan KK

About this chapter

Cite this chapter

Hatakeyama, K., Hayami, S., Matsumoto, Y. (2017). Graphene Oxide Based Electrochemical System for Energy Generation. In: Nakato, T., Kawamata, J., Takagi, S. (eds) Inorganic Nanosheets and Nanosheet-Based Materials. Nanostructure Science and Technology. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56496-6_12

Download citation

Publish with us

Policies and ethics