Skip to main content

Advertisement

Log in

Tensile deformation behavior of coarse-grained Ti-55 titanium alloy with different hydrogen additions

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The effect of hydrogen addition on the deformation behavior of coarse-grained Ti-55 alloys (~ 20 μm) was studied by uniaxial tension tests at high temperature. The elongation of hydrogenated Ti-55 titanium alloy firstly increases and then decreases with hydrogen content increasing at 875 °C. The highest elongation of 243.8% is obtained in the hydrogenated alloy with 0.1 wt% H, and the peak stress reaches a minimum value of 29.0 MPa in the hydrogenated alloy with 0.3 wt% H. Compared with that of the unhydrogenated alloy, the elongation of the hydrogenated alloy with 0.1 wt% H increases by 41.3% and its peak stress decreases by 40.6% at 875 °C. Hydrogen addition can promote the transformation of β phase and the dislocation movement. Appropriate hydrogen content can evidently improve the deformation properties of coarse-grained Ti-55 titanium alloy.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Senkov ON, Froes FH. Thermohydrogen processing of titanium alloys. Int J Hydrogen Energy. 1999;24(6):565.

    Article  CAS  Google Scholar 

  2. Froes FH, Senkov ON, Qazi JI. Hydrogen as a temporary alloying element in titanium alloys: thermohydrogen processing. Int Mater Rev. 2004;49(3–4):227.

    Article  CAS  Google Scholar 

  3. Yoshimura H. Mezzoscopic grain refinement and improved mechanical properties of titanium materials by hydrogen treatments. Int J Hydrogen Energy. 1997;22(2–3):145.

    Article  CAS  Google Scholar 

  4. Yoshimura H, Nakahigashi J. Ultra-fine-grain refinement and superplasticity of titanium alloys obtained through protium treatment. Int J Hydrogen Energy. 2002;27(7–8):769.

    Article  CAS  Google Scholar 

  5. Nechaev YS, Iourtchenko DV, Hirschberg JG, Veziroǧlu TN. On the physics of hydrogen plastification and superplasticity of metallic materials and compounds. Int J Hydrogen Energy. 2004;29(13):1421.

    Article  CAS  Google Scholar 

  6. Nosov VK, Ovchinnikov AV, Shchugorev YY. Applications of hydrogen plasticizing of titanium alloys. Met Sci Heat Treat. 2008;50(7–8):378.

    Article  CAS  Google Scholar 

  7. Zhang S, Zhao L. Effect of hydrogen on the superplasticity and microstructure of Ti-6Al-4V alloy. J Alloys Compd. 1995;218(2):233.

    Article  CAS  Google Scholar 

  8. Murzinova MA, Salishchev GA, Afonichev DD. Superplasticity of hydrogen-containing VT6 titanium alloy with a submicrocrystalline structure. Phys Met Metallogr. 2007;104(2):195.

    Article  Google Scholar 

  9. Zhang X, Zhao Y, Zeng W. Effect of hydrogen on the superplasticity of Ti600 alloy. Int J Hydrogen Energy. 2010;35(9):4354.

    Article  CAS  Google Scholar 

  10. Zhang X, Zhao Y, Zeng W. Effect of hydrogen on the superplasticity of Ti40 alloy with large grains. Mater Sci Eng, A. 2010;527(15):3489.

    Article  Google Scholar 

  11. Shadabroo MS, Eivani AR, Jafarian HR, Razavi SF, Zhou J. Optimization of interpass annealing for a minimum recrystallized grain size and further grain refinement towards nanostructured AA6063 during equal channel angular pressing. Mater Charact. 2016;112:160.

    Article  CAS  Google Scholar 

  12. Samaee M, Najaf S, Eivani AR, Jafarian HR, Zhou J. Simultaneous improvements of the strength and ductility of fine-grained AA6063 alloy with increasing number of ECAP passes. Mater Sci Eng, A. 2016;669:350.

    Article  CAS  Google Scholar 

  13. Yan CK, Qu SJ, Feng AH, Shen J. Recent advances of deformation twins in titanium and titanium alloys. Chin J Rare Met. 2019;43(5):449.

    Google Scholar 

  14. Liu XY, Liu KJ, Luo L, Yang XR, Zhang Q, Gao FL. Progress in research on twinning behavior of commercially pure titanium during equal channel angular pressing. Chin J Rare Met. 2019;43(8):863.

    Google Scholar 

  15. Zhilyaev AP, Langdon TG. Using high-pressure torsion for metal processing: fundamentals and applications. Prog Mater Sci. 2008;53(6):893.

    Article  CAS  Google Scholar 

  16. Karami S, Jafarian H, Eivani AR, Kheirandish S. Engineering tensile properties by controlling welding parameters and microstructure in a mild steel processed by friction stir welding. Mater Sci Eng, A. 2016;670:68.

    Article  CAS  Google Scholar 

  17. Wang YL, Hui SX, Liu R, Ye WJ, Yu Y, Kayumov R. Dynamic response and plastic deformation behavior of Ti-5Al-2.5Sn ELI and Ti-8Al-1Mo-1V alloys under high-strain rate. Rare Met. 2014;33(2):127.

    Article  Google Scholar 

  18. Jia BH, Song WD, Tang HP, Wang ZH, Mao XN, Ning JG. Hot deformation behavior and constitutive model of TC18 alloy during compression. Rare Met. 2014;33(4):383.

    Article  CAS  Google Scholar 

  19. Luo J, Wang LF, Li MQ, Ge CJ, Ma XX, Yang YT. Formation of adiabatic shear band and deformation mechanisms during warm compression of Ti–6Al–4V alloy. Rare Met. 2016;35(8):598.

    Article  CAS  Google Scholar 

  20. Zhu FH, Xiong W, Xifeng Li XF, Chen J. A new flow stress model based on Arrhenius equation to track hardening and softening behaviors of Ti6Al4V alloy. Rare Met. 2018;37(12):1035.

    Article  CAS  Google Scholar 

  21. Li GP, Li D, Liu YY, Guan SX, Wang QJ, Hu ZQ. Microstructure of second-phase particles in high-temperature Ti-55 alloy after creep. Mater Charact. 1996;37(4):183.

    Article  CAS  Google Scholar 

  22. Liu ZG, Li PJ, Xiong LT, Liu TY, He LJ. High-temperature tensile deformation behavior and microstructure evolution of Ti55 titanium alloy. Mater Sci Eng, A. 2017;680:259.

    Article  CAS  Google Scholar 

  23. Wu FY, Xu WC, Jin XZ, Zhong XM, Wan XJ, Shan DB, Guo B. Study on hot deformation behavior and microstructure evolution of Ti-55 high-temperature titanium alloy. Metals. 2017;7(8):319.

    Article  Google Scholar 

  24. Wu FY, Xu WC, Yang ZZ, Guo B, Shan DB. Study on hot press forming process of large curvilinear generatrix workpiece of Ti55 high-temperature titanium alloy. Metals. 2018;8(10):827.

    Article  CAS  Google Scholar 

  25. Li XF, Jiang J, Wang S, Chen J, Wang YQ. Effect of hydrogen on the microstructure and superplasticity of Ti-55 alloy. Int J Hydrogen Energy. 2017;42(9):6338.

    Article  CAS  Google Scholar 

  26. Li XF, Chen NN, Chen J, Mei QF, Wan L, Jia CL, Liu H. Superplastic deformation behavior of Ti-55 alloy without and with 01 wt%H addition. Mater Sci Eng, A. 2017;704:386.

    Article  CAS  Google Scholar 

  27. Li XF, Chen NN, Wu HP, Chen J, Qu FS. Low-temperature superplastic gas bulging of Ti-55 alloy by hydrogen addition. Int J Hydrogen Energy. 2018;43(27):12455.

    Article  CAS  Google Scholar 

  28. Senkov ON, Jonas JJ, Froes FH. Recent advances in the thermohydrogen processing of titanium alloys. JOM. 1996;48(7):42.

    Article  CAS  Google Scholar 

  29. Zhang SQ, Zhao LR. Effect of hydrogen on the superplasticity and microstructure of Ti-6Al-4V alloy. J Alloy Compd. 1995;218(2):233.

    Article  CAS  Google Scholar 

  30. Teter DF, Robertson IM, Birnbaum HK. The effects of hydrogen on the deformation and fracture of β-titanium. Acta Mater. 2001;49(20):4313.

    Article  CAS  Google Scholar 

  31. Zong YY, Shan DB, Lü Y, Guo B. Effect of 0.3 wt% H addition on the high temperature deformation behaviors of Ti-6Al-4V alloy. Int J Hydrogen Energy. 2007;32(16):3936.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Equipment Pre-research Fund (No. 61409230408), the National Natural Science Foundation of China (No. 51875350) and the Program of Shanghai Excellent Academic Research Leadership (No. 19XD1401900).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, XF., Xu, FF., Hu, L. et al. Tensile deformation behavior of coarse-grained Ti-55 titanium alloy with different hydrogen additions. Rare Met. 40, 2092–2098 (2021). https://doi.org/10.1007/s12598-020-01546-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01546-7

Keywords

Navigation