Skip to main content
Log in

Microstructure and tensile properties of Ti-62421S alloy plate with different annealing treatments

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Ti-62421S (Ti–6Al–2Sn–4Zr–2Nb–1Mo–0.2Si) is a novel short-time using high-temperature titanium alloy. The effects of annealing on microstructure and tensile properties of Ti-62421S alloy plate were studied through optical microscopy (OM), electron probe microanalysis (EPMA), transmission electron microscopy (TEM), and tensile tests. The results show that, with annealing temperature increasing, the volume fraction of primary α (αp)-phase decreases while that of transformed β (βt)-structure and secondary α (αs)-phase increases. The room-temperature strength and plasticity are insensitive to annealing temperature. However, with annealing temperature increasing, the tensile strength decreases at 550 °C, while increases at 600 and 650 °C instead. It is suggested that, at 550 °C, the strengthening mechanism is mainly boundary strengthening and the biggest contributor is αp-phase by providing αp/β-boundary area. Above 600 °C, the strengthening mechanism is grain strengthening, where αs-phase strengthens the β-phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Williams JC. Alternate materials choices-some challenges to the increased use of Ti alloys. Mater Sci Eng A. 1999;263(2):107.

    Article  Google Scholar 

  2. Savage MF, Tatalovich J, Zupan M, Hemker KJ, Mills MJ. Deformation mechanisms and microtensile behavior of single colony Ti-6242Si. Mater Sci Eng A. 2001;319–321:398.

    Article  Google Scholar 

  3. Madsen A, Ghonem H. Effects of aging on the tensile and fatigue behavior of the near-α Ti-1100 at room temperature and 593 °C. Mater Sci Eng A. 1994;177(1–2):63.

    Article  Google Scholar 

  4. Boyer RR. An overview on the use of titanium in the aerospace industry. Mater Sci Eng A. 1996;213(1–2):103.

    Article  Google Scholar 

  5. Germain L, Gey N, Humbert M, Bocher P, Jahazi M. Analysis of sharp microstructure heterogeneities in a bimodal IMI834 billet. Acta Mater. 2005;53(13):3535.

    Article  Google Scholar 

  6. Gogia AK. High-temperature titanium alloys. Defence Sci J. 2005;55(2):149.

  7. Jia WJ, Zeng WD, Zhou YG, Liu JR, Wang QJ. High-temperature deformation behavior of Ti60 titanium alloy. Mater Sci Eng A. 2011;528(12):4068.

    Article  Google Scholar 

  8. Immarigeon JP, Holt RT, Koul AK, Zhao L, Wallace W, Beddoes JC. Lightweight materials for aircraft applications. Mater Charact. 1995;35(1):41.

    Article  Google Scholar 

  9. Fei Y, Zhu ZS, Wang XN, Li J, Shang GQ, Zhu LW. Influence of forging process on microstructure and mechanical properties of a new low-cost titanium alloy. Chin J Rare Met. 2013;37(2):186.

    Google Scholar 

  10. He XC, Xie G, Li HR, Xu QX, Li RX, Chen JH. Removal of aluminum and titanium from sodium silicate solution under high temperature and pressure. Chin J Rare Met. 2013;37(2):277.

    Google Scholar 

  11. Shi K, Guo XL, Wang MT. Hot forming and superplastic forming performance of high-temperature BTi-62421S titanium alloy. Chin J. Nonferrous Met. 2010;20(s1):770.

    Google Scholar 

  12. Wang T, Guo HZ, Wang YW, Peng XN, Zhao Y, Yao ZK. The effect of microstructure on tensile properties, deformation mechanisms and fracture models of TG6 high temperature titanium alloy. Mater Sci Eng A. 2011;528(6):2370.

    Article  Google Scholar 

  13. Zeng LY, Hong Q, Yang GJ, Zhao YQ, Qi YL, Guo P. Tensile and creep properties of Ti-600 alloy. Trans. Nonferrous Met. Soc. China. 2007;17(s1):522.

    Google Scholar 

  14. Cui WF, Liu CM, Zhou L, Luo GZ. Characteristics of microstructures and second-phase particles in Y-bearing Ti-1100 alloy. Mater Sci Eng A. 2002;323(1–2):192.

    Article  Google Scholar 

  15. Es-Souni M. Creep behaviour and creep microstructures of a high-temperature titanium alloy Ti–5.8Al–4.0Sn–3.5Zr–0.7Nb–0.35Si–0.06C (Timetal 834): part I. Primary and steady-state creep. Mater Charact. 2001;46(5):365.

    Article  Google Scholar 

  16. Lu B, Yang R. Heat treatment on microstructure and mechanical properties of Ti650 alloy sheet for short-term use at 650 °C. Aeronaut. Mater. Technol. 2007;6:77.

    Google Scholar 

  17. Leyens C, Peters M. Titanium and Titanium Alloys. Weinheim: Wiley; 2006. 11.

    Google Scholar 

  18. Jan S, Ryszard F, Waldemar Z. The effect of microstructure on the mechanical properties of two-phase titanium alloys. Mater Des. 1997;18(4–6):361.

    Google Scholar 

  19. Lu G, Zhang Z, Hui SX, Li ZK, Chen ZQ, He SL. Study on BT25y high temperature and high strength titanium alloy. Acta Metall Sin. 2002;38(s1):206.

Download references

Acknowledgments

This study was financially supported by the National Natural Science Foundation of China (No. 51201016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Yun Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, YL., Song, XY., Ma, W. et al. Microstructure and tensile properties of Ti-62421S alloy plate with different annealing treatments. Rare Met. 37, 568–573 (2018). https://doi.org/10.1007/s12598-014-0349-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-014-0349-5

Keywords

Navigation