Skip to main content
Log in

A Boltzmann scheme with physically relevant discrete velocities for Euler equations

  • Published:
International Journal of Advances in Engineering Sciences and Applied Mathematics Aims and scope Submit manuscript

Abstract

Kinetic or Boltzmann schemes are interesting alternatives to the macroscopic numerical methods for solving the hyperbolic conservation laws of gas dynamics. They utilize the particle-based description instead of the wave propagation models. While the continuous particle velocity based upwind schemes were developed in the earlier decades, the discrete velocity Boltzmann schemes introduced in the last decade are found to be simpler and are easier to handle. In this work, we introduce a novel way of introducing discrete velocities which correspond to the physical wave speeds and formulate a discrete velocity Boltzmann scheme for solving Euler equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. Sanders, R.H., Prendergast, K.H.: The possible relation of the 3-kilospace arm to explosions in the galactic nucleus. Astrophys. J. 188, 489–500 (1974)

    Article  Google Scholar 

  2. Pullin, D.I.: Direct simulation methods for compressible gas flow. J. Comput. Phys. 34, 231–244 (1980)

    Article  Google Scholar 

  3. Reitz, R.D.: One-dimensional compressible gas dynamics calculations using the Boltzmann equation. J. Comput. Phys. 42, 108–123 (1981)

    Article  Google Scholar 

  4. Deshpande, S.M.: Kinetic theory based new upwind methods for inviscid compressible flows. AIAA Paper No.86-0275 (1986)

  5. Mandal, J.C., Deshpande, S.M.: Kinetic flux vector splitting for Euler equations. Comput. Fluids 23(2), 447–478 (1994)

    Article  MathSciNet  Google Scholar 

  6. Kaniel, S.: A kinetic model for compressible flow equations. Indiana Univ. Math. J. 37(3), 537–563 (1988)

    Article  MathSciNet  Google Scholar 

  7. Perthame, B.: Boltzmann-type schemes for gas dynamics and entropy property. SIAM J. Numer. Anal. 27(6), 1405–1421 (1990)

    Article  MathSciNet  Google Scholar 

  8. Prendergast, K.H., Xu, K.: Numerical hydrodynamics from gas-kinetic theory. J. Comput. Phys. 109, 53–66 (1993)

    Article  MathSciNet  Google Scholar 

  9. Raghurama Rao, S.V., Deshpande, S.M.: Peculiar velocity based upwind method for inviscid compressible flows. Comput. Fluid Dyn. J. 3(4), 415–432 (1995)

    Google Scholar 

  10. Natalini, R.: A discrete kinetic approximation of entropy solutions to multidimensional scalar conservation laws. J. Differ. Equ. 148, 292–317 (1998)

    Article  MathSciNet  Google Scholar 

  11. Aregba-Driollet, D., Natalini, R.: Discrete kinetic schemes for multidimensional systems of conservation laws. SIAM J. Numer. Anal. 37(6), 1973–2004 (2000)

    Article  MathSciNet  Google Scholar 

  12. Raghurama Rao, S.V., Balakrishna, K.: An accurate shock capturing algorithm with a relaxed system for hyperbolic conservation laws. AIAA paper no.AIAA-2003-4115 (2003)

  13. Raghurama Rao, S.V., Subba Rao, M.V.: A simple multi-dimensional relaxation scheme for hyperbolic conservation laws. AIAA paper no.AIAA-2003-3535 (2003)

  14. Arun, K.R., Raghurama Rao, S.V., Lukáčová-Medvidová, M., Prasad, P.: A Genuinely multi-dimensional relaxation scheme for hyperbolic conservation laws. In: Proceedings of the seventh ACFD conference, pp. 1029–1039, 26–30. Indian institute of science, Bangalore (2007)

  15. Arun, K.R., Lukáčová-Medvidová, M., Prasad, P., Raghurama Rao, S.V.: A second order accurate kinetic relaxation scheme for inviscid compressible flows. In: Recent developments in numerics of nonlinear hyperbolic conservation laws, notes on numerical fluid mechanics and multidisciplinary design, pp. 120, 1–24. Springer (2013)

  16. Arun, K.R., Lukáčová-Medvidová, M.: A characteristics based genuinely multidimensional discrete kinetic scheme for the Euler equations. J. Sci. Comput. 55, 40–64 (2013)

    Article  MathSciNet  Google Scholar 

  17. Bhatnagar, P.L., Gross, E.P., Krook, M.: A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94(3), 511–525 (1954)

    Article  Google Scholar 

  18. Bouchut, F.: Construction of BGK models with a family of kinetic entropies for a given system of conservation laws. J. Stat. Phys. 95, 113–170 (1999)

    Article  MathSciNet  Google Scholar 

  19. Jin, S., Xin, Z.: The relaxation schemes for systems of conservation laws in arbitrary space dimensions. Commun. Pure Appl. Math. 48, 235–277 (1995)

    Article  MathSciNet  Google Scholar 

  20. Tang, H.-Z., Xu, K.: Pseudoparticle representation and positivity analysis of explicit and implicit Steger-Warming FVS schemes. Z. Angew. Math. Phys. 52, 847–858 (2001)

    Article  MathSciNet  Google Scholar 

  21. Deshpande, S.M.: A second-order accurate kinetic theory based method for inviscid compressible flows, NASA Technical Paper 2613. NASA Langley Research Centre, Hampton (1986)

    Google Scholar 

  22. Steger, J.L., Warming, R.F.: Flux vector-splitting of the inviscid gas dynamic equations with applications to finite difference methods. J. Comput. Phys. 40, 263–293 (1981)

    Article  MathSciNet  Google Scholar 

  23. \(\text{Mathematica}^{\textregistered }\), Wolfram Research, Inc., Champaign, IL, USA. www.wolfram.com

  24. Culbert, B.L.: Computational Gasdynamics. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  25. Parent, B.: Positivity-preserving high-resolution schemes for systems of conservation laws. J. Comput. Phys. 231, 173–189 (2012)

    Article  MathSciNet  Google Scholar 

  26. Kurganov, A., Tadmor, E.: New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations. J. Comput. Phys. 160, 241–282 (2000)

    Article  MathSciNet  Google Scholar 

  27. Jayaraj: A novel multi-dimensional relaxation scheme for hyperbolic conservation laws, M.Tech. thesis, Department of Mechanical Engineering, University B.D.T. College of Engineering, Davanagere, Karnataka, India (2006)

  28. Raghurama Rao, S.V., Deshmukh, R., Kotnala, S.: A Lattice Boltzmann Relaxation Scheme for Inviscid Compressible Flows, arXiv preprint. arXiv:1504.04089 [math.NA] (2015)

  29. Quirk, J.J.: A contribution to the great Riemann solver debate. Int. J. Numer. Meth. Fluids 6, 555–574 (1994)

    Article  MathSciNet  Google Scholar 

  30. Jin, S., Liu, J.-G.: The effects of numerical viscosities I. Slowly moving shocks. J. Comput. Phys. 126, 373–389 (1996)

    Article  MathSciNet  Google Scholar 

  31. Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics, 3rd edn. Springer, New York (2009)

    Book  Google Scholar 

  32. Zhang, S., Shu, C.-W.: A new smoothness indicator for the WENO schemes and its effect on the convergence to steady state solutions. J. Sci. Comput. 31(1/2), 273–305 (2007)

    Article  MathSciNet  Google Scholar 

  33. Woodward, P., Colella, P.: The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys. 54, 115–173 (1984)

    Article  MathSciNet  Google Scholar 

  34. Manna, M.: A three dimensional high resolution upwind finite volume euler solver, Technical note 180, Von Karman Institute for Fluid Dynamics (1992)

  35. Huang, K., Wu, H., Yu, H., Yan, D.: Cures for numerical shock instability in HLLC solver. Int. J. Numer. Meth. Fluids 65(9), 1026–1038 (2011)

    Article  Google Scholar 

  36. Liou, M.S.: Mass flux schemes and connection to shock instability. J. Comput. Phys. 160(2), 623–648 (2000)

    Article  Google Scholar 

  37. Viviand, H.: Numerical solutions of two-dimensional reference test cases. In: Test Cases for Inviscid Flow Field Methods. AGARD 211 (1985)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Raghurama Rao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raghavendra, N.V., Rao, S.V.R. A Boltzmann scheme with physically relevant discrete velocities for Euler equations. Int J Adv Eng Sci Appl Math 13, 305–328 (2021). https://doi.org/10.1007/s12572-021-00311-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12572-021-00311-y

Keywords

Navigation