Skip to main content
Log in

End-to-end simulation and verification of GNC and robotic systems considering both space segment and ground segment

  • Original Paper
  • Published:
CEAS Space Journal Aims and scope Submit manuscript

Abstract

In the framework of a project called on-orbit servicing end-to-end simulation, the final approach and capture of a tumbling client satellite in an on-orbit servicing mission are simulated. The necessary components are developed and the entire end-to-end chain is tested and verified. This involves both on-board and on-ground systems. The space segment comprises a passive client satellite, and an active service satellite with its rendezvous and berthing payload. The space segment is simulated using a software satellite simulator and two robotic, hardware-in-the-loop test beds, the European Proximity Operations Simulator (EPOS) 2.0 and the OOS-Sim. The ground segment is established as for a real servicing mission, such that realistic operations can be performed from the different consoles in the control room. During the simulation of the telerobotic operation, it is important to provide a realistic communication environment with different parameters like they occur in the real world (realistic delay and jitter, for example).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Aghili, F., Parsa, K.: Motion and parameter estimation of space objects using laser-vision data. J. Guid. Control Dyn. 32(2), 538–55 (2009)

    Article  Google Scholar 

  2. Artigas, J., Balachandran, R., Riecke, C., Stelzer, M., Weber, B., Ryu, J., Albu-Schäffer, A.: KONTUR-2: force-feedback teleoperation from the international space station. In: Proceedings of the International Conference on Robotics and Automation, Stockholm, Sweden (2016)

  3. Artigas, J., De Stefano, M., Rackl, W., Lampariello, R., Brunner, B., Bertleff, W., Burger, R., Porges, O., Giordano, A., Borst, C., Albu-Schäffer, A.: The OOS-SIM: an on-ground simulation facility for on-orbit servicing robotic operations. In: Proceedings of the IEEE International Conference on Robotics and Automation, Seattle, USA (2015)

  4. Artigas, J., Ryu, J., Preusche, C., Hirzinger, G.: Network representation and passivity of delayed teleoperation systems. In: Proceedings of the International Conference on Intelligent Robots and Systems, San Francisco, USA (2011)

  5. Bell, R., Morphopoulos, T., Pollack, J., Collins, J., Wertz, J.R., Van Allen, R.E.: Hardware-in-the-loop tests of an autonomous GN&C system for on-orbit servicing. In: Proceedings of the AIAA-LA Section/SSTC Responsive Space Conference (2003)

  6. Benninghoff, H., Rems, F., Boge, T.: Development and hardware-in-the-loop test of a guidance, navigation and control system for on-orbit servicing. Acta Astron. 102, 67–80 (2014)

    Article  Google Scholar 

  7. Boge, T., Wimmer, T., Ma, O., Tzschichholz, T.: EPOS—using robotics for RvD simulation of on-orbit servicing missions. In: Proceedings of the AIAA Guidance, Navigation, and Control Conference, Toronto, Canada (2010)

  8. Briese, L.E., Klöckner, A., Reiner, M.: The DLR environment library for multi-disciplinary aerospace applications. In: Proceedings of the 12th International Modelica Conference, Prague, Czech Republic (2017)

  9. DARPA: Robotic servicing of geosynchronous satellites (RSGS). (2017). https://www.darpa.mil/program/robotic-servicing-of-geosynchronous-satellites. Accessed 31 July 2017

  10. DARPA: SES and MDA announce first satellite life extension agreement. (2017). https://www.ses.com/press-release/ses-and-mda-announce-first-satellite-life-extension-agreement. Accessed 31 July 2017

  11. De Stefano, M., Artigas, J., Rackl, W., Albu-Schäffer, A.: Passivity of virtual free-floating dynamics rendered on robotic facilities. In: Proceedings of the IEEE International Conference on Robotics and Automation, Seattle, USA (2015)

  12. DLR Space Operations and Astronaut Training: European Proximity Operations Simulator 2.0 (EPOS)—a robotic-based rendezvous and docking simulator. J. Large-Scale Res. Facil. 3(A107) (2017). https://jlsrf.org/index.php/lsf/article/view/155

  13. Drummond, T., Cipolla, R.: Real-time tracking of complex structures with on-line camera calibration. In: Proceedings of the International Workshop on Vision Algorithms: Theory and Practice, Corfu, Greece (1999)

  14. Ellery, A., Kreisel, J., Sommer, B.: The case for robotic on-orbit servicing of spacecraft: Spacecraft reliability is a myth. Acta Astron. 63(5–6), 632–648 (2008)

    Article  Google Scholar 

  15. ESA: e.Deorbit: the worlds 1st adr mission is moving forward. (2017). http://blogs.esa.int/cleanspace/2017/06/02/e-deorbit-the-worlds-1st-adr-mission-is-moving-forward/. Accessed 31 July 2017

  16. Guglieri, G., Maroglio, F., Pellegrino, P., Torre, L.: A ground facility to test GNC algorithms and sensors for autonomous rendezvous and docking. Adv. Astronaut. Sci. 145, 933–952 (2012)

    Google Scholar 

  17. Hulin, T., Hertkorn, T., Kremer, K., Preusche, P., Schätzle, C., Artigas, J.S., Sagardia, M., Zacharias, F.: The DLR bimanual haptic device with optimized workspace. In: Proceedings of IEEE International Conference on Robotics and Automation, Shanghai, China (2011)

  18. Inaba, N., Oda, M.: Autonomous satellite capture by a space robot: world first on-orbit experiment on a japanese robot satellite ETS-VII. In: Proceedings of IEEE International Conference on Robotics and Automation, San Francisco, USA (2000)

  19. Kim, W.S., Hannaford, B., Bejczy, A.K.: Force-reflection and shared compliant control in operating telemanipulators with time delay. IEEE Trans. Robot. Autom. 8(2), 176–185 (1992)

    Article  Google Scholar 

  20. Maloy, J.P.: TIPC—providing communication for Linux clusters. In: Proceedings of the Linux Symposium, Ottawa, Canada (2004)

  21. N2YO: ENVISAT orbit. (2017). http://www.n2yo.com/satellite. Accessed 21 March 2017

  22. NASA: Restore-L—robotic servicing mission. (2017). https://sspd.gsfc.nasa.gov/restore-l.html. Accessed 31 July 2017

  23. Nelson, B.J., Morrow, J.D., Khosla, P.K.: Improved force control through visual servoing. In: Proceedings of the American Control Conference, Seattle, USA (1995)

  24. Nishida, S.-I., Kawamoto, S., Okawa, Y., Terui, F., Kitamura, S.: Space debris removal system using a small satellite. Acta Astron. 65(1–2), 95–102 (2009)

    Article  Google Scholar 

  25. Nocedal, W., Wright, S.J.: Numerical Optimization. Springer Series in Operations Research. Springer, New York (1999)

    Google Scholar 

  26. Paul, J., Dettmann, A., Girault, B., Hilljegerdes, J., Kirchner, F., Ahrns, I., Sommer, J.: INVERITAS: a facility for hardware-in-the-loop long distance movement simulation for rendezvous and capture of satellites and other autonomous objects. Acta Astron. 116, 1–24 (2015)

    Article  Google Scholar 

  27. Petit, A.: Robust visual detection and tracking of complex objects: applications to space autonomous rendezvous and proximity operations. Ph.D. thesis, Université Rennes 1, Rennes, France (2013)

  28. Plura, M., Müller, H., Stelzer, M., Sellmaier, F.: Mission control concepts for robotic operations: existing approaches and new solutions. In: Proceedings of 11th Symposium on Advanced Space Technologies in Robotics and Automation, Noordwijk, The Netherlands (2011)

  29. Preusche, C., Reintsema, D., Landzettel, K., Hirzinger, G.: Robotics component verification on ISS ROKVISS—preliminary results for telepresence. In: Proceedings of the International Conference on Intelligent Robots and Systems, Beijing, China (2006)

  30. Reiner, M., Bals, J.: Nonlinear inverse models for the control of satellites with flexible structures. In: Proceedings of the 10th International Modelica Conference, Lund, Sweden (2014)

  31. Rems, F., Risse, E.-A., Benninghoff, H.: Rendezvous GNC-system for autonomous orbital servicing of uncooperative targets. In: Proceedings of the 10th International ESA Conference on Guidance, Navigation and Control Systems, Salzburg, Austria (2017)

  32. Stangl, C., Lotko, B., Geyer, M.P., Oswald, M., Braun, A.: GECCOS the new monitoring and control system at DLR-GSOC for space operations, based on SCOS-2000. In: Proceedings of the 13th International Conference on Space Operations, Pasadena, USA (2014)

  33. Stelzer, M., Brunner, B., Landzettel, K., Steinmetz, B.-M., Vogel, J., Hirzinger, G.: HIROSCO—a high-level robotic spacecraft controller. In: Proceedings of the 10th International Symposium on Artificial Intelligence, Robotics and Automation in Space, Sapporo, Japan (2010)

  34. Stoll, E., Letschnik, J., Walter, U., Artigas, J., Kremer, P., Preusche, C., Hirzinger, G.: On-orbit servicing. Robot. Autom. Mag. IEEE 16(4), 2933 (2009)

    Article  Google Scholar 

  35. Tzschichholz, T., Boge, T., Schilling, K.: Relative pose estimation of satellites using PMD-/CCD-sensor data fusion. Acta Astron. 109, 25–33 (2015)

    Article  Google Scholar 

  36. Uyama, N., Lund, H., Asakimori, K., Ikeda, Y., Hirano, D., Nakanishi, H., Yoshida, K.: Integrated experimental environment for orbital robotic systems, using ground-based and free-floating manipulators. In: Proceedings of the IEEE/SICE International Symposium on System Integration 2010 (2010)

  37. Volpe, R., Nesnas, I., Estlin, T., Mutz, D., Petras, R., Das, H.: The CLARAty architecture for robotic autonomy. In: Proceedings of the Aerospace Conference, Big Sky, USA (2001)

  38. Weber, D., Falcone, R., Gnat, M., Hauke, A., Huber, F.: Technical studies for operations with real-time communications in robotic missions. In: Proceedings of the 14th International Conference on Space Operations, Daejeon, Korea (2016)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heike Benninghoff.

Additional information

This paper is based on a presentation at the 10th International ESA Conference on Guidance, Navigation and Control Systems—29 May–2 June 2017—Salzburg—Austria.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benninghoff, H., Rems, F., Risse, E. et al. End-to-end simulation and verification of GNC and robotic systems considering both space segment and ground segment. CEAS Space J 10, 535–553 (2018). https://doi.org/10.1007/s12567-017-0192-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12567-017-0192-2

Keywords

Navigation