Skip to main content

Advertisement

Log in

The natural plant flavonoid apigenin is a strong antioxidant that effectively delays peripheral neurodegenerative processes

  • Original Article
  • Published:
Anatomical Science International Aims and scope Submit manuscript

Abstract

Oxidative stress contributes to the progression of neurodegenerative diseases of the central and peripheral nervous systems, including Alzheimer’s disease, Parkinson’s disease, stroke, and diabetic neuropathy. Despite the greater capability of peripheral nerves to regenerate compared with those in the brain or spinal cord, chronic oxidative stress leads to irreversible neurodegeneration in peripheral nerves. Thus, many efforts have been made to defend against irreversible peripheral nerve degeneration and oxidative stress. Numerous phytochemicals have been revealed as antioxidants which neutralize free radicals and reduce peripheral neurocellular damage. Among them, polyphenols alleviate neurodegeneration by interacting with reactive oxygen species. Apigenin is a polyphenol found in plant-derived foods, including parsley, thyme, celery, and chamomile tea. Apigenin has been reported to exert antioxidative effects by scavenging free radicals. In particular, apigenin has a neuroprotective effect against oxidative stress in neurological disorders, such as cerebral ischemia. However, to date, no studies have shown an association of the inhibitory effect of apigenin with peripheral nerve degeneration. In this work, we showed that apigenin has a neuroprotective effect against peripheral nerve degeneration according to four key phenotypes: axonal degradation, myelin fragmentation, trans-dedifferentiation, and proliferation of Schwann cells via Krox20- and extracellular signal-regulated kinase-independent processes. Thus, apigenin could be a good candidate to treat peripheral neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ayala A, Muñoz MF, Argüelles S (2014) Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev 2014:360438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baas PW, Black MM (1990) Individual microtubules in the axon consist of domains that differ in both composition and stability. J Cell Biol 111:495–509

    Article  CAS  PubMed  Google Scholar 

  • Bizzozero OA, Bixler H, Parkhani J, Pastuszyn A (2001) Nitric oxide reduces the palmitoylation of rat myelin proteolipid protein by an indirect mechanism. Neurochem Res 26:1127–1137

    Article  CAS  PubMed  Google Scholar 

  • Brown GC, Cooper CE (1994) Nanomolar concentrations of nitric oxide reversibly inhibit synaptosomal respiration by competing with oxygen at cytochrome oxidase. FEBS Lett 356:295–298

    Article  CAS  PubMed  Google Scholar 

  • Buttke TM, Sandstrom PA (1994) Oxidative stress as a mediator of apoptosis. Immunol Today 15:7–10

    Article  CAS  PubMed  Google Scholar 

  • Cao C, Dai L, Mu J, Wang X, Hong Y, Zhu C, Jin L, Li S (2019) S1PR2 antagonist alleviates oxidative stress-enhanced brain endothelial permeability by attenuating p38 and Erk1/2-dependent cPLA2 phosphorylation. Cell Signal 53:151–161

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Wang X, Zha D, Cai F, Zhang W, He Y, Huang Q, Zhuang H, Hua ZC (2016) Apigenin potentiates TRAIL therapy of non-small cell lung cancer via upregulating DR4/DR5 expression in a p53-dependent manner. Sci Rep 6:35468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cirmi S, Ferlazzo N, Lombardo GE, Ventura-Spagnolo E, Gangemi S, Calapai G, Navarra M (2016) Neurodegenerative diseases: might citrus flavonoids play a protective role? Molecules 21:1312

    Article  CAS  PubMed Central  Google Scholar 

  • Czyz J, Madeja Z, Irmer U, Korohoda W, Hülser DF (2005) Flavonoid apigenin inhibits motility and invasiveness of carcinoma cells in vitro. Int J Cancer 114:12–18

    Article  CAS  PubMed  Google Scholar 

  • Eckersley L (2002) Role of the Schwann cell in diabetic neuropathy. Int Rev Neurobiol 50:293–321

    Article  CAS  PubMed  Google Scholar 

  • Gupta S, Afaq F, Mukhtar H (2002) Involvement of nuclear factor-kappa B, Bax and Bcl-2 in induction of cell cycle arrest and apoptosis by apigenin in human prostate carcinoma cells. Oncogene 21:3727–3738

    Article  CAS  PubMed  Google Scholar 

  • Ha SK, Lee P, Park JA, Oh HR, Lee SY, Park JH, Lee EH, Ryu JH, Lee KR, Kim SY (2008) Apigenin inhibits the production of NO and PGE2 in microglia and inhibits neuronal cell death in a middle cerebral artery occlusion-induced focal ischemia mice model. Neurochem Int 52:878–886

    Article  CAS  PubMed  Google Scholar 

  • Harrisingh MC, Perez-Nadales E, Parkinson DB, Malcolm DS, Mudge AW, Lloyd AC (2004) The Ras/Raf/ERK signalling pathway drives Schwann cell dedifferentiation. EMBO J 23:3061–3071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Husain SR, Cilurd J, Cillard P (1987) Hydroxyl radical scavenging activity of flavonoids. Phytochemistry 26:2489–2491

    Article  CAS  Google Scholar 

  • Jessen KR, Mirsky R (2016) The repair Schwann cell and its function in regenerating nerves. J Physiol 594:3521-3531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung J, Cai W, Jang SY, Shin YK, Suh DJ, Kim JK, Park HT (2011) Transient lysosomal activation is essential for p75 nerve growth factor receptor expression in myelinated Schwann cells during Wallerian degeneration. Anat Cell Biol 44:41–49

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaewkhaw R, Scutt AM, Haycock JW (2012) Integrated culture and purification of rat Schwann cells from freshly isolated adult tissue. Nat Protoc 7:1996–2004

    Article  CAS  PubMed  Google Scholar 

  • Klaunig JE, Kamendulis LM (2004) The role of oxidative stress in carcinogenesis. Annu Rev Pharmacol Toxicol 44:239–267

    Article  CAS  PubMed  Google Scholar 

  • Kloska A, Jakóbkiewicz-Banecka J, Narajczyk M, Banecka-Majkutewicz Z, Wȩgrzyn G (2011) Effects of flavonoids on glycosaminoglycan synthesis: implications for substrate reduction therapy in Sanfilippo disease and other mucopolysaccharidoses. Metab Brain Dis 26:1–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi M, Ishibashi S, Tomimitsu H, Yokota T, Mizusawa H (2012) Proliferating immature Schwann cells contribute to nerve regeneration after ischemic peripheral nerve injury. J Neuropathol Exp Neurol 71:511–519

    Article  CAS  PubMed  Google Scholar 

  • Konat GW, Wiggins RC (1985) Effect of reactive oxygen species on myelin membrane proteins. J Neurochem 45:1113–1118

    Article  CAS  PubMed  Google Scholar 

  • Korolchuk VI, Menzies FM, Rubinsztein DC (2010) Mechanisms of cross-talk between the ubiquitin-proteasome and autophagy-lysosome systems. FEBS Lett 584:1393–1398

    Article  CAS  PubMed  Google Scholar 

  • Lee CF, Liu CY, Hsieh RH, Wei YH (2005) Oxidative stress-induced depolymerization of microtubules and alteration of mitochondrial mass in human cells. Ann N Y Acad Sci 1042:246–254

    Article  CAS  PubMed  Google Scholar 

  • Lee HK, Shin YK, Jung J, Seo SY, Baek SY, Park HT (2009) Proteasome inhibition suppresses schwann cell dedifferentiation in vitro and in vivo. Glia 57:1825–1834

    Article  PubMed  Google Scholar 

  • Lloyd AC, Obermüller F, Staddon S, Barth CF, McMahon M, Land H (1997) Cooperating oncogenes converge to regulate cyclin/cdk complexes. Genes Dev 11:663–677

    Article  CAS  PubMed  Google Scholar 

  • Ma X, Lin W, Lin Z, Hao M, Gao X, Zhang Y, Kuang H (2017) Liraglutide alleviates H2O2-induced retinal ganglion cells injury by inhibiting autophagy through mitochondrial pathways. Peptides 92:1–8

    Article  CAS  PubMed  Google Scholar 

  • Manthon NF, Malcolm DS, Harrisingh MC, Cheng L, Lloyd AC (2001) Lack of replicative senescence in normal rodent glia. Science 291:872–875

    Article  Google Scholar 

  • Mao X-Y, Yu J, Liu Z-Q, Zhou H-H (2015) Apigenin attenuates diabetes-associated cognitive decline in rats via suppressing oxidative stress, nitric oxide synthase and anti-apoptotic pathway. Int J Clin Exp Med 8:15506–15513

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martini R, Fischer S, López-Vales R, David S (2008) Interactions between Schwann cells and macrophages in injury and inherited demyelinating disease. Glia 56:1566–1577

    Article  PubMed  Google Scholar 

  • Napoli I, Noon LA, Ribeiro S, Kerai AP, Parrinello S, Rosenberg LH, Collins MJ, Harrisingh MC, White IJ, Woodhoo A, Lloyd AC (2012) A central role for the ERK-signaling pathway in controlling Schwann cell plasticity and peripheral nerve regeneration in vivo. Neuron 73:729–742

    Article  CAS  PubMed  Google Scholar 

  • Newbern JM, Snider WD (2012) Bers-ERK Schwann cells coordinate nerve regeneration. Neuron 73:623–626

    Article  CAS  PubMed  Google Scholar 

  • Park BS, Kim H-W, Rhyu IJ, Park C, Yeo SG, Huh Y, Jeong NY, Jung J (2015) Hydrogen sulfide is essential for Schwann cell responses to peripheral nerve injury. J Neurochem 2015:230–242

    Article  CAS  Google Scholar 

  • Patel D, Shukla S, Gupta S (2007) Apigenin and cancer chemoprevention: progress, potential and promise (review). Int J Oncol 30:233–245

    CAS  PubMed  Google Scholar 

  • Pehar M, Cassina P, Vargas MR, Castellanos R, Viera L, Beckman JS, Estévez AG, Barbeito L (2004) Astrocytic production of nerve growth factor in motor neuron apoptosis: implications for amyotrophic lateral sclerosis. J Neurochem 89:464–473

    Article  CAS  PubMed  Google Scholar 

  • Renno WM, Al-Maghrebi M, Alshammari A, George P (2013) (–)-Epigallocatechin-3-gallate (EGCG) attenuates peripheral nerve degeneration in rat sciatic nerve crush injury. Neurochem Int 62:221–231

    Article  CAS  PubMed  Google Scholar 

  • Rubbo H, Radi R, Trujillo M, Telleri R, Kalyanaraman B, Barnes S, Kirk M, Freeman BA (1994) Nitric oxide regulation of superoxide and peroxynitrite-dependent lipid peroxidation. J Biol Chem 269:26066–26075

    CAS  PubMed  Google Scholar 

  • Santin Y, Sicard P, Vigneron F, Guilbeau-Frugier C, Dutaur M, Lairez O, Couderc B, Manni D, Korolchuk VI, Lezoualc’h F, Parini A, Mialet-Perez J, (2016) Oxidative stress by monoamine oxidase-a impairs transcription factor EB activation and autophagosome clearance, leading to cardiomyocyte necrosis and heart failure. Antioxid Redox Signal 25:10–27

    Article  CAS  PubMed  Google Scholar 

  • Sastre J, Pallardó FV, Viña J (2003) The role of mitochondrial oxidative stress in aging. Free Radic Biol Med 35:1–8

    Article  CAS  PubMed  Google Scholar 

  • Shin YH, Lee SJ, Jung J (2013) Extracellular ATP inhibits Schwann cell dedifferentiation and proliferation in an ex vivo model of Wallerian degeneration. Biochem Biophys Res Commun 430:852–857

    Article  CAS  PubMed  Google Scholar 

  • Shukla S, Gupta S (2007) Apigenin-induced cell cycle arrest is mediated by modulation of MAPK, PI3K-Akt, and loss of cyclin D1 associated retinoblastoma dephosphorylation in human prostate cancer cells. Cell Cycle 6:1102–1114

    Article  CAS  PubMed  Google Scholar 

  • Singh V, Sharma V, Verma V, Pandey D, Yadav SK, Maikhuri JP, Gupta G (2015) Apigenin manipulates the ubiquitin–proteasome system to rescue estrogen receptor-β from degradation and induce apoptosis in prostate cancer cells. Eur J Nutr 54:1255–1267

    Article  CAS  PubMed  Google Scholar 

  • Svaren J, Meijer D (2008) The molecular machinery of myelin gene transcription in Schwann cells. Glia 56:1541–1551

    Article  PubMed  PubMed Central  Google Scholar 

  • Topilko P, Schneider-Maunoury S, Levi G, Baron-Van Evercooren A, Chennoufi ABY, Seitanidou T, Babinet C, Charnay P (1994) Krox-20 controls myelination in the peripheral nervous system. Nature 371:796–799

    Article  CAS  PubMed  Google Scholar 

  • Ujiki MB, Ding X-Z, Salabat MR, Bentrem DJ, Golkar L, Milam B, Talamonti MS, Bell RH, Iwamura T, Adrian TE (2006) Apigenin inhibits pancreatic cancer cell proliferation through G2/M cell cycle arrest. Mol Cancer 5:76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Acker SABE, Van Balen GP, Van Den Berg DJ, Bast A, Van Der Vijgh WJF (1998) Influence of iron chelation on the antioxidant activity of flavonoids. Biochem Pharmacol 56:935–943

    Article  PubMed  Google Scholar 

  • Wang JT, Medress ZA, Barres BA (2012) Axon degeneration: molecular mechanisms of a self-destruction pathway. J Cell Biol 196:7–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu F, Yao H, Zheng F, Tang S, Lin X, Li L, Zhou J, Li H (2018) Protective effects of honokiol against oxidative stress-induced apoptotic signaling in mouse podocytes treated with H2O2. Exp Ther Med 16:1278–1284

    PubMed  PubMed Central  Google Scholar 

  • Yan X, Qi M, Li P, Zhan Y, Shao H (2017) Apigenin in cancer therapy: anti-cancer effects and mechanisms of action. Cell Biosci 7:50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao L, Wang JL, Liu R, Li XX, Li JF, Zhang L (2013) Neuroprotective, anti-amyloidogenic and neurotrophic effects of apigenin in an Alzheimer’s disease mouse model. Molecules 18:9949–9965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIT) (N.Y. Jeong, 2018R1A2B6001123; J. Jung, 2018R1D1A1B07040282; H.J. Chung, 2018R1C1B5029745).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junyang Jung, Na Young Jeong or Hyung-Joo Chung.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, M., Jung, J., Jeong, N.Y. et al. The natural plant flavonoid apigenin is a strong antioxidant that effectively delays peripheral neurodegenerative processes. Anat Sci Int 94, 285–294 (2019). https://doi.org/10.1007/s12565-019-00486-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12565-019-00486-2

Keywords

Navigation