Skip to main content
Log in

DNRLCNN: A CNN Framework for Identifying MiRNA–Disease Associations Using Latent Feature Matrix Extraction with Positive Samples

  • Original research article
  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

Emerging evidence indicates that miRNAs have strong relationships with many human diseases. Investigating the associations will contribute to elucidating the activities of miRNAs and pathogenesis mechanisms, and providing new opportunities for disease diagnosis and drug discovery. Therefore, it is of significance to identify potential associations between miRNAs and diseases. The existing databases about the miRNA–disease associations (MDAs) only provide the known MDAs, which can be regarded as positive samples. However, the unknown MDAs are not sufficient to regard as reliable negative samples. To deal with this uncertainty, we proposed a convolutional neural network (CNN) framework, named DNRLCNN, based on a latent feature matrix extracted by only positive samples to predict MDAs. First, by only considering the positive samples into the calculation process, we captured the latent feature matrix for complex interactions between miRNAs and diseases in low-dimensional space. Then, we constructed a feature vector for each miRNA and disease pair based on the feature representation. Finally, we adopted a modified CNN for the feature vector to predict MDAs. As a result, our model achieves better performance than other state-of-the-art methods which based CNN in fivefold cross-validation on both miRNA–disease association prediction task (average AUC of 0.9030) and miRNA–phenotype association prediction task (average AUC of 0. 9442). In addition, we carried out case studies on two human diseases, and all the top-50 predicted miRNAs for lung neoplasms are confirmed by HMDD v3.2 and dbDEMC 2.0 databases, 98% of the top-50 predicted miRNAs for heart failure are confirmed. The experiment results show that our model has the capability of inferring potential disease-related miRNAs.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ambros VR (2004) The functions of animal microRNAs. Nature 431(7006):350–355. https://doi.org/10.1038/nature02871

    Article  CAS  PubMed  Google Scholar 

  2. Ambros VR (2001) microRNAs: tiny regulators with great potential. Cell 107(7):823–826. https://doi.org/10.1016/S0092-8674(01)00616-X

    Article  CAS  PubMed  Google Scholar 

  3. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297. https://doi.org/10.1016/S0092-8674(04)00045-5

    Article  CAS  PubMed  Google Scholar 

  4. Meister G, Tuschl T (2004) Mechanisms of gene silencing by double-stranded RNA. Nature 431(7006):343–349. https://doi.org/10.1038/nature02873

    Article  CAS  PubMed  Google Scholar 

  5. Jiang Q et al (2010) Prioritization of disease microRNAs through a human phenome-microRNAome network. BMC Syst Biol 4(1):1–9. https://doi.org/10.1186/1752-0509-4-S1-S2

    Article  CAS  Google Scholar 

  6. Carleton M, Cleary MA, Linsley PS (2007) MicroRNAs and cell cycle regulation. Cell Cycle 6(17):2127–2132. https://doi.org/10.4161/cc.6.17.4641

    Article  CAS  PubMed  Google Scholar 

  7. Karp X, Ambros V (2005) Encountering MicroRNAs in cell fate signaling. Science 310(5752):1288–1289. https://doi.org/10.1126/science.1121566

    Article  CAS  PubMed  Google Scholar 

  8. Li J et al (2012) Evidence for positive selection on a number of MicroRNA regulatory interactions during recent human evolution. PLoS Genet 8(3):e1002578. https://doi.org/10.1371/journal.pgen.1002578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chen KC, Rajewsky N (2006) Natural selection on human microRNA binding sites inferred from SNP data. Nat Genet 38(12):1452–1456. https://doi.org/10.1038/ng1910

    Article  CAS  PubMed  Google Scholar 

  10. Xuan P et al (2013) “Prediction of microRNAs associated with human diseases based on weighted k most similar neighbors,” (in eng). PLoS ONE 8(8):e70204. https://doi.org/10.1371/journal.pone.0070204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sun D, Li A, Feng H, Wang M (2016) NTSMDA: prediction of miRNA–disease associations by integrating network topological similarity. Mol BioSyst 12(7):2224–2232. https://doi.org/10.1039/C6MB00049E

    Article  CAS  PubMed  Google Scholar 

  12. You ZH et al (2017) “PBMDA: a novel and effective path-based computational model for miRNA-disease association prediction,” (in eng). PLoS Comput Biol 13(3):e1005455. https://doi.org/10.1371/journal.pcbi.1005455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Peng W, Lan W, Zhong J, Wang J, Pan Y (2017) “A novel method of predicting microRNA-disease associations based on microRNA, disease, gene and environment factor networks,.” Methods. https://doi.org/10.1016/j.ymeth.2017.05.024

    Article  PubMed  Google Scholar 

  14. Peng W, Lan W, Yu Z, Wang J, Pan Y (2016) A framework for integrating multiple biological networks to predict microRNA-disease associations. IEEE Trans NanoBiosci 16(2):100–107. https://doi.org/10.1109/TNB.2016.2633276

    Article  Google Scholar 

  15. Chen X, Xie D, Wang L, Zhao Q, You Z, Liu H (2018) BNPMDA: bipartite network projection for MiRNA–disease association prediction. Bioinformatics 34(18):3178–3186. https://doi.org/10.1093/bioinformatics/bty333

    Article  CAS  PubMed  Google Scholar 

  16. Yu S, Liang C, Xiao Q, Li G, Ding P, Luo J (2018) GLNMDA: a novel method for miRNA-disease association prediction based on global linear neighborhoods. RNA Biol 15(9):1215–1227. https://doi.org/10.1080/15476286.2018.1521210

    Article  PubMed  PubMed Central  Google Scholar 

  17. Chen H, Zhang Z, Feng D (2019) Prediction and interpretation of miRNA-disease associations based on miRNA target genes using canonical correlation analysis. BMC Bioinformatics 20(1):1–8. https://doi.org/10.1186/s12859-019-2998-8

    Article  CAS  Google Scholar 

  18. Hu Y et al (2019) Optimal control nodes in disease-perturbed networks as targets for combination therapy. Nat Commun 10(1):2180–2180. https://doi.org/10.1038/s41467-019-10215-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chen X, Yan G (2015) Semi-supervised learning for potential human microRNA-disease associations inference. Sci Rep 4(1):5501–5501. https://doi.org/10.1038/srep05501

    Article  CAS  Google Scholar 

  20. Xiao Q, Luo J, Liang C, Cai J, Ding P (2018) A graph regularized non-negative matrix factorization method for identifying microRNA-disease associations. Bioinformatics 34(2):239–248. https://doi.org/10.1093/bioinformatics/btx545

    Article  CAS  PubMed  Google Scholar 

  21. Chen X, Huang L (2017) “LRSSLMDA: Laplacian regularized sparse subspace learning for MiRNA-disease association prediction,” (in eng). PLoS Comput Biol 13(12):e1005912. https://doi.org/10.1371/journal.pcbi.1005912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen X, Wang C, Yin J, You Z (2018) Novel human miRNA-disease association inference based on random forest. Molecular therapy Nucleic acids 13:568–579. https://doi.org/10.1016/j.omtn.2018.10.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yan C, Wang J, Ni P, Lan W, Wu F, Pan Y (2019) DNRLMF-MDA: predicting microRNA-disease associations based on similarities of microRNAs and diseases. IEEE/ACM Trans Comput Biol Bioinf 16(1):233–243. https://doi.org/10.1109/TCBB.2017.2776101

    Article  CAS  Google Scholar 

  24. Zhang S, Yao L, Sun A, Tay Y (2019) Deep learning based recommender system: a survey and new perspectives. ACM Comput Surv 52(1):1–38. https://doi.org/10.1145/3285029

    Article  Google Scholar 

  25. Wang Y, Lei X, Pan Y (2022) Predicting microbe-disease association based on heterogeneous network and global graph feature learning. Chin J Electron 31(2):345–353. https://doi.org/10.1049/cje.2020.00.212

    Article  Google Scholar 

  26. Lei XJ, Bian C, Pan Y (2021) Predicting CircRNA-disease associations based on improved weighted biased meta-structure. J Comput Sci Technol 36(2):288–298. https://doi.org/10.1007/s11390-021-0798-x

    Article  Google Scholar 

  27. Peng J et al (2019) A learning-based framework for miRNA-disease association identification using neural networks. Bioinformatics 35(21):4364–4371. https://doi.org/10.1093/bioinformatics/btz254

    Article  CAS  PubMed  Google Scholar 

  28. Fu L, Peng Q (2017) A deep ensemble model to predict miRNA-disease association. Sci Rep 7(1):14482. https://doi.org/10.1038/s41598-017-15235-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang L, Chen X, Yin J (2019) Prediction of potential miRNA–disease associations through a novel unsupervised deep learning framework with variational autoencoder. Cells 8(9):1040. https://doi.org/10.3390/cells8091040

    Article  CAS  PubMed Central  Google Scholar 

  30. Li J, Zhang S, Liu T, Ning C, Zhang Z, Zhou W (2020) Neural inductive matrix completion with graph convolutional networks for miRNA-disease association prediction. Bioinformatics 36(8):2538–2546. https://doi.org/10.1038/s41598-017-15235-6

    Article  CAS  PubMed  Google Scholar 

  31. Li J, Li Z, Nie R, You Z, Bao W (2020) “FCGCNMDA: predicting miRNA-disease associations by applying fully connected graph convolutional networks,” (in eng). Mol Genet Genomics 295(5):1197–1209. https://doi.org/10.1007/s00438-020-01693-7

    Article  CAS  PubMed  Google Scholar 

  32. Li Z, Li J, Nie R, You Z-H, Bao W (2021) A graph auto-encoder model for miRNA-disease associations prediction. Brief Bioinform. https://doi.org/10.1093/bib/bbaa240

    Article  PubMed  PubMed Central  Google Scholar 

  33. Li Y et al (2014) HMDD v2.0: a database for experimentally supported human microRNA and disease associations. Nucleic Acids Res 42:1070–1074. https://doi.org/10.1093/nar/gkt1023

    Article  CAS  Google Scholar 

  34. Lee I, Blom UM, Wang PI, Shim JE, Marcotte EM (2011) Prioritizing candidate disease genes by network-based boosting of genome-wide association data. Genome Res 21(7):1109–1121. https://doi.org/10.1101/gr.118992.110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nelson SJ et al (1999) “Automated assignment of medical subject headings.” Am Med Informatics Assoc Annu Symp. https://doi.org/10.2196/jmir.1.2.e7

    Article  Google Scholar 

  36. Wang D, Wang J, Lu M, Song F, Cui Q (2010) Inferring the human microRNA functional similarity and functional network based on microRNA-associated diseases. Bioinformatics 26(13):1644–1650. https://doi.org/10.1093/bioinformatics/btq241

    Article  CAS  PubMed  Google Scholar 

  37. Van Laarhoven T, Nabuurs SB, Marchiori E (2011) Gaussian interaction profile kernels for predicting drug–target interaction. Bioinformatics 27(21):3036–3043. https://doi.org/10.1093/bioinformatics/btr500

    Article  CAS  PubMed  Google Scholar 

  38. Lan W et al (2016) LDAP: a web server for lncRNA-disease association prediction. Bioinformatics 33(3):458–460. https://doi.org/10.1093/bioinformatics/btw639

    Article  CAS  Google Scholar 

  39. Liu Y, Wu M, Miao C, Zhao P, Li X (2016) Neighborhood regularized logistic matrix factorization for drug-target interaction prediction. PLoS Comput Biol 12(2):e1004760. https://doi.org/10.1371/journal.pcbi.1004760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Xin R, Zhang J, Shao Y (2020) Complex network classification with convolutional neural network. Tsinghua Sci Technol 25(4):447–457. https://doi.org/10.26599/TST.2019.9010055

    Article  Google Scholar 

  41. Basodi S, Ji C, Zhang H, Pan Y (2020) Gradient amplification: an efficient way to train deep neural networks. Big Data Min Anal 3(3):196–207. https://doi.org/10.26599/BDMA.2020.9020004

    Article  Google Scholar 

  42. K. Simonyan and A. Zisserman (2014) “Very deep convolutional networks for large-scale image recognition,” computer science. Preprint at http://arxiv.org/abs/1409.1556

  43. Dweep H, Gretz N (2015) miRWalk2.0: a comprehensive atlas of microRNA-target interactions. Nat Methods 12(8):697–697. https://doi.org/10.1038/nmeth.3485

    Article  CAS  PubMed  Google Scholar 

  44. Jiang Q et al (2009) miR2Disease: a manually curated database for microRNA deregulation in human disease. Nucleic Acids Res 37:98–104. https://doi.org/10.1093/nar/gkn714

    Article  CAS  Google Scholar 

  45. Xie B, Ding Q, Han H, Wu D (2013) miRCancer: a microRNA–cancer association database constructed by text mining on literature. Bioinformatics 29(5):638–644. https://doi.org/10.1093/bioinformatics/btt014

    Article  CAS  PubMed  Google Scholar 

  46. Feng J et al (2012) “An integrated analysis of germline and somatic, genetic and epigenetic alterations at 9p21.3 in glioblastoma,” (in eng). Cancer 118(1):232–240. https://doi.org/10.1002/cncr.26250

    Article  CAS  PubMed  Google Scholar 

  47. Yang CH, Wang Y, Sims M, Cai C, Pfeffer LM (2019) MicroRNA-1 suppresses glioblastoma in preclinical models by targeting fibronectin. Cancer Lett 465:59–67. https://doi.org/10.1016/j.canlet.2019.08.021

    Article  CAS  PubMed  Google Scholar 

  48. Shang C, Hong Y, Guo Y, Liu YH, Xue YX (2014) MiR-210 up-regulation inhibits proliferation and induces apoptosis in glioma cells by targeting SIN3A. Med Sci Monit Int Med J Exp Clin Res 20:2571–2577. https://doi.org/10.12659/MSM.892994

    Article  Google Scholar 

  49. Sun X, Li Z, Chen Y (2016) “The potential prognostic value of MicroRNA-429 for human gliomas,” (in eng). Ann Clin Lab Sci 46(1):44–48 (Winter)

    CAS  PubMed  Google Scholar 

  50. Peng W, Du J, Dai W, Lan W (2021) Predicting miRNA-disease association based on modularity preserving heterogeneous network embedding. Front Cell Dev Biol 9:603758. https://doi.org/10.3389/fcell.2021.603758

    Article  PubMed  PubMed Central  Google Scholar 

  51. Wu D, Shang M, Luo X, Wang Z (2021) An L1-and-L2-norm-oriented latent factor model for recommender systems. IEEE Trans Neural Netw Lear Syst. https://doi.org/10.1109/TNNLS.2021.3071392

    Article  Google Scholar 

  52. Wu D, Luo X, Shang M, He Y, Wang G, Wu X (2020) A Data-characteristic-aware latent factor model for web services qos prediction. IEEE Trans Knowl Data Eng. https://doi.org/10.1109/TKDE.2020.3014302

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported in part by the Natural Science Foundation of Hunan Province of China (Nos.2018JJ2262, 2020JJ5373), the CSC (No. 201906725017), the Scientific Research Fund of Hunan Provincial Education Department (Nos.15CY007, 22A211, 20B348), Natural Science Foundation of Yunnan Province of China (2019FA024), and the National Natural Science Foundation of China (No. 62002116, 61972185)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiu Xiao or Wei Peng.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, J., Zhou, W., Kang, J. et al. DNRLCNN: A CNN Framework for Identifying MiRNA–Disease Associations Using Latent Feature Matrix Extraction with Positive Samples. Interdiscip Sci Comput Life Sci 14, 607–622 (2022). https://doi.org/10.1007/s12539-022-00509-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-022-00509-z

Keywords

Navigation